Existence and limit behavior of least energy solutions to constrained Schrodinger-Bopp-Podolsky systems in R3

被引:0
|
作者
Ramos, Gustavo de Paula [1 ]
Siciliano, Gaetano [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Elliptic systems; Schrodinger-Bopp-Podolsky equations; Constrained minimization; Critical point theory;
D O I
10.1007/s00033-023-01950-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the following Schrodinger-Bopp-Podolsky system in R-3 under an L-2-norm constraint,{- delta u + omega u + phi u = u|u|(P-2),- delta phi + a(2)delta(2)phi = 4 pi u(2),(sic)u(sic)(L)(2) = rho,where a, rho > 0 are fixed, with our unknowns being u, phi: R-3 -> R and omega is an element of R. We prove that if 2 < p < 3 (resp., 3 < p < 10/3) and rho > 0 is sufficiently small (resp., sufficiently large), then this system admits a least energy solution. Moreover, we prove that if 2 < p < 14/5 and rho > 0 is sufficiently small, then least energy solutions are radially symmetric up to translation, and as a -> 0, they converge to a least energy solution of the Schrodinger-Poisson-Slater system under the same L-2-norm constraint.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3
    Shuai, Wei
    Wang, Qingfang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3267 - 3282
  • [32] Infinitely many solutions for linearly coupled Schrodinger systems in R3
    Wang, Lushun
    Zeng, Dehua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 13791 - 13812
  • [33] Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3
    Luo, Xiao
    Wang, Qingfang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 : 19 - 32
  • [34] The existence of sign-changing solutions for Schrodinger-Kirchhoff problems in R3
    Xiao, Ting
    Tang, Yaolan
    Zhang, Qiongfen
    AIMS MATHEMATICS, 2021, 6 (07): : 6726 - 6733
  • [35] Existence of Solutions for Modified Schrodinger-Poisson System with Critical Nonlinearity in R3
    Liu, Weiming
    Gan, Lu
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 411 - 429
  • [36] Existence and Asymptotic Behaviour of Solutions for a Quasilinear Schrodinger-Poisson System in R3
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [37] Existence of normalized solutions for a class of Kirchhoff-Schrodinger-Poisson equations in R3
    Yang, Jin-Fu
    Guo, Wei
    Li, Wen-Min
    Zhang, Jia-Feng
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (01)
  • [38] Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3
    He, Xiaoming
    Zou, Wenming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1813 - 1834
  • [39] LONG TIME BEHAVIOR OF SOLUTIONS TO A SCHRODINGER-POISSON SYSTEM IN R3
    Dabaa, Amna
    Goubet, Olivier
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1743 - 1756
  • [40] Existence and multiplicity results for perturbed Kirchhoff-type Schrodinger systems in R3
    Lu, Dengfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1180 - 1193