Existence of nontrivial solutions for a quasilinear Schrodinger-Poisson system in R3 with periodic potentials

被引:0
|
作者
Wei, Chongqing [1 ]
Li, Anran [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Wucheng Rd, Taiyuan 030006, Peoples R China
[2] Beijing Technol & Business Univ, Fucheng Rd, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger-Poisson system; periodic potential; variational methods; truncation technique; nontrivial solution; KLEIN-GORDON-MAXWELL; ASYMPTOTIC-BEHAVIOR; STANDING WAVES; STABILITY;
D O I
10.14232/ejqtde.2023.1.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger-Poisson system in R-3 { -Delta u + V( x)u + lambda phi u = f (x, u), x epsilon R-3, -Delta phi - epsilon(4)Delta(4)phi = lambda u(2), x epsilon R-3, where lambda and epsilon are positive parameters, Delta(4)u = div(|del u|(2)del u), V is a continuous and periodic potential function with positive infimum, f (x, t) epsilon C(R-3 x R, R) is periodic with respect to x and only needs to satisfy some superquadratic growth conditions with respect to t. One nontrivial solution is obtained for lambda small enough and epsilon fixed by a combination of variational methods and truncation technique. Keywords: quasilinear Schrodinger-Poisson system, periodic potential, variational methods, truncation technique, nontrivial solution.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Existence and Asymptotic Behaviour of Solutions for a Quasilinear Schrodinger-Poisson System in R3
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [2] Multiple nontrivial solutions for a nonhomogeneous Schrodinger-Poisson system in R3
    Khoutir, Sofiane
    Chen, Haibo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (28) : 1 - 17
  • [3] Existence and Asymptotic Behavior of Solutions for a Quasilinear Schrodinger-Poisson System in R3 with a General Nonlinearity
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 43 - 66
  • [4] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [5] Existence of Solutions for Modified Schrodinger-Poisson System with Critical Nonlinearity in R3
    Liu, Weiming
    Gan, Lu
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (02): : 411 - 429
  • [6] Two nontrivial solutions for a nonhomogeneous fractional Schrodinger-Poisson equation in R3
    Jiang, Ruiting
    Zhai, Chengbo
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01):
  • [7] Existence of infinitely many normalized radial solutions for a class of quasilinear Schrodinger-Poisson equations in R3
    Yang, Jinfu
    Li, Wenmin
    Guo, Wei
    Zhang, Jiafeng
    AIMS MATHEMATICS, 2022, 7 (10): : 19292 - 19305
  • [8] Existence of nontrivial solutions for fractional Schrodinger-Poisson system with sign-changing potentials
    Che, Guofeng
    Chen, Haibo
    Shi, Hongxia
    Wang, Zewei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 5050 - 5064
  • [9] Existence of Multi-bump Solutions for the Magnetic Schrodinger-Poisson System in R3
    Ma, Yiwen
    Ji, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 10886 - 10914
  • [10] Existence of multiple solutions to Schrodinger-Poisson system in a nonlocal set up in R3
    Choudhuri, Debajyoti
    Saoudi, Kamel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):