Existence of nontrivial solutions for a quasilinear Schrodinger-Poisson system in R3 with periodic potentials

被引:0
|
作者
Wei, Chongqing [1 ]
Li, Anran [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Wucheng Rd, Taiyuan 030006, Peoples R China
[2] Beijing Technol & Business Univ, Fucheng Rd, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger-Poisson system; periodic potential; variational methods; truncation technique; nontrivial solution; KLEIN-GORDON-MAXWELL; ASYMPTOTIC-BEHAVIOR; STANDING WAVES; STABILITY;
D O I
10.14232/ejqtde.2023.1.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger-Poisson system in R-3 { -Delta u + V( x)u + lambda phi u = f (x, u), x epsilon R-3, -Delta phi - epsilon(4)Delta(4)phi = lambda u(2), x epsilon R-3, where lambda and epsilon are positive parameters, Delta(4)u = div(|del u|(2)del u), V is a continuous and periodic potential function with positive infimum, f (x, t) epsilon C(R-3 x R, R) is periodic with respect to x and only needs to satisfy some superquadratic growth conditions with respect to t. One nontrivial solution is obtained for lambda small enough and epsilon fixed by a combination of variational methods and truncation technique. Keywords: quasilinear Schrodinger-Poisson system, periodic potential, variational methods, truncation technique, nontrivial solution.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] Infinitely Many High Energy Radial Solutions for Schrodinger-Poisson System in R3
    Du, Shuang-Jiang
    Wu, Xing-Ping
    Tang, Chun-Lei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4323 - 4334
  • [32] Revisit to sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3
    Liang, Zhanping
    Xu, Jing
    Zhu, Xiaoli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 783 - 799
  • [33] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM
    Huang, Lanxin
    Su, Jiabao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1597 - 1612
  • [34] Existence and multiplicity of nontrivial solutions for Schrodinger-Poisson systems on bounded domains
    Almuaalemi, Belal
    Chen, Haibo
    Khoutir, Sofiane
    BOUNDARY VALUE PROBLEMS, 2018,
  • [35] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [36] Nonexistence Results for the Schrodinger-Poisson Equations with Spherical and Cylindrical Potentials in R3
    Jiang, Yongsheng
    Zhou, Yanli
    Wiwatanapataphee, B.
    Ge, Xiangyu
    ABSTRACT AND APPLIED ANALYSIS, 2013, : 1 - 6
  • [37] Quasilinear asymptotically periodic Schrodinger-Poisson system with subcritical growth
    Zhang, Jing
    Guo, Lifeng
    Yang, Miaomiao
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [38] Existence and multiplicity of solutions of Schrodinger-Poisson systems with radial potentials
    Li, Anran
    Su, Jiabao
    Zhao, Leiga
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (02) : 319 - 332
  • [39] On the Well-posedness of the Magnetic Schrodinger-Poisson System in R3
    Barbaroux, J. -M.
    Vougalter, V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) : 15 - 22
  • [40] Positive solution for a nonlinear stationary Schrodinger-Poisson system in R3
    Wang, Zhengping
    Zhou, Huan-Song
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (04) : 809 - 816