Existence of nontrivial solutions for a quasilinear Schrodinger-Poisson system in R3 with periodic potentials

被引:0
|
作者
Wei, Chongqing [1 ]
Li, Anran [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Wucheng Rd, Taiyuan 030006, Peoples R China
[2] Beijing Technol & Business Univ, Fucheng Rd, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger-Poisson system; periodic potential; variational methods; truncation technique; nontrivial solution; KLEIN-GORDON-MAXWELL; ASYMPTOTIC-BEHAVIOR; STANDING WAVES; STABILITY;
D O I
10.14232/ejqtde.2023.1.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger-Poisson system in R-3 { -Delta u + V( x)u + lambda phi u = f (x, u), x epsilon R-3, -Delta phi - epsilon(4)Delta(4)phi = lambda u(2), x epsilon R-3, where lambda and epsilon are positive parameters, Delta(4)u = div(|del u|(2)del u), V is a continuous and periodic potential function with positive infimum, f (x, t) epsilon C(R-3 x R, R) is periodic with respect to x and only needs to satisfy some superquadratic growth conditions with respect to t. One nontrivial solution is obtained for lambda small enough and epsilon fixed by a combination of variational methods and truncation technique. Keywords: quasilinear Schrodinger-Poisson system, periodic potential, variational methods, truncation technique, nontrivial solution.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [11] EXISTENCE OF POSITIVE MULTI-BUMP SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM IN R3
    Alves, Claudianor O.
    Yang, Minbo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 5881 - 5910
  • [12] Existence and asymptotic behaviour of standing waves for quasilinear Schrodinger-Poisson systems in R3
    Benmlih, Khalid
    Kavian, Otared
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03): : 449 - 470
  • [13] Existence and concentration of positive solutions for semilinear Schrodinger-Poisson systems in R3
    Wang, Jun
    Tian, Lixin
    Xu, Junxiang
    Zhang, Fubao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) : 243 - 273
  • [14] Existence and Concentration Behavior of Solutions of the Critical Schrodinger-Poisson Equation in R3
    Wang, Jichao
    Yu, Ting
    MATHEMATICS, 2021, 9 (05) : 1 - 24
  • [15] Multiple solutions for a class of quasilinear Schrodinger-Poisson system in R3 with critical nonlinearity and zero mass
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [16] EXISTENCE AND ASYMPTOTIC BEHAVIOUR OF GROUND STATE SOLUTION FOR QUASILINEAR SCHRODINGER-POISSON SYSTEMS IN R3
    Ding, Ling
    Li, Lin
    Meng, Yi-Jie
    Zhuang, Chang-Ling
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (01) : 241 - 264
  • [17] Existence of Multiple Nontrivial Solutions for a Strongly Indefinite Schrodinger-Poisson System
    Chen, Shaowei
    Xiao, Liqin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [18] LONG TIME BEHAVIOR OF SOLUTIONS TO A SCHRODINGER-POISSON SYSTEM IN R3
    Dabaa, Amna
    Goubet, Olivier
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1743 - 1756
  • [19] Multiplicity of solutions for Schrodinger-Poisson system with critical exponent in R3
    Peng, Xueqin
    Jia, Gao
    Huang, Chen
    AIMS MATHEMATICS, 2021, 6 (03): : 2059 - 2077
  • [20] Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3
    Shuai, Wei
    Wang, Qingfang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3267 - 3282