Existence of nontrivial solutions for a quasilinear Schrodinger-Poisson system in R3 with periodic potentials

被引:0
|
作者
Wei, Chongqing [1 ]
Li, Anran [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Wucheng Rd, Taiyuan 030006, Peoples R China
[2] Beijing Technol & Business Univ, Fucheng Rd, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger-Poisson system; periodic potential; variational methods; truncation technique; nontrivial solution; KLEIN-GORDON-MAXWELL; ASYMPTOTIC-BEHAVIOR; STANDING WAVES; STABILITY;
D O I
10.14232/ejqtde.2023.1.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger-Poisson system in R-3 { -Delta u + V( x)u + lambda phi u = f (x, u), x epsilon R-3, -Delta phi - epsilon(4)Delta(4)phi = lambda u(2), x epsilon R-3, where lambda and epsilon are positive parameters, Delta(4)u = div(|del u|(2)del u), V is a continuous and periodic potential function with positive infimum, f (x, t) epsilon C(R-3 x R, R) is periodic with respect to x and only needs to satisfy some superquadratic growth conditions with respect to t. One nontrivial solution is obtained for lambda small enough and epsilon fixed by a combination of variational methods and truncation technique. Keywords: quasilinear Schrodinger-Poisson system, periodic potential, variational methods, truncation technique, nontrivial solution.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条