On the existence of solutions for nonhomogeneous Schrodinger-Poisson system

被引:73
|
作者
Wang, Lixia [1 ]
Ma, Shiwang [2 ,3 ]
Wang, Xiaoming [4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Tianjin 300384, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2016年
关键词
Schrodinger-Poisson systems; sublinear nonlinearities; concave and convex nonlinearities; variational methods; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; SOLITARY WAVES; MULTIPLE SOLUTIONS; THOMAS-FERMI; EQUATION; CONCAVE; ATOMS;
D O I
10.1186/s13661-016-0584-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the following nonhomogeneous Schrodinger-Poisson systems: (*) {-Delta u + V(x) u + K(x)phi(x) u = f (x, u) + g(x), x is an element of R-3, -Delta phi = K(x) u(2), lim(vertical bar x vertical bar ->+infinity)phi(x) = 0, x is an element of R-3, where f (x, u) is either sublinear in u as vertical bar u vertical bar ->infinity or a combination of concave and convex terms. Under some suitable assumptions, the existence of solutions is proved by using critical point theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Existence of multiple positive solutions to nonhomogeneous Schrodinger-Poisson system
    Zhang, Qi
    Li, Fuyi
    Liang, Zhanping
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 353 - 363
  • [2] Existence of Positive Solutions for the Nonhomogeneous Schrodinger-Poisson System with Strong Singularity
    Liao Jiafeng
    Chen Qingfang
    Zhu Lijun
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (02): : 186 - 200
  • [3] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [4] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM
    Huang, Lanxin
    Su, Jiabao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1597 - 1612
  • [5] MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CRITICAL EXPONENT
    Zhu, Li-Jun
    Liao, Jia-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 1702 - 1712
  • [6] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [7] On the existence of solutions for the Schrodinger-Poisson equations
    Zhao, Leiga
    Zhao, Fukun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 155 - 169
  • [8] MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES
    Wang, Lixia
    Ma, Shiwang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 628 - 637
  • [9] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH p-LAPLACIAN
    Huang, Lanxin
    Su, Jiabao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (28) : 1 - 14
  • [10] EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM WITH A PERTURBATION
    Sun, Juntao
    Wu, Tsung-fang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (02) : 967 - 998