The Existence of Ground State Solutions for a Schrodinger-Bopp-Podolsky System with Convolution Nonlinearity

被引:2
|
作者
Xiao, Yao [1 ]
Chen, Sitong [1 ]
Shu, Muhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Bopp-Podolsky system; Ground state solution; Nehari-Pohozaev manifold; Concentration-compactness; KLEIN-GORDON-MAXWELL; EQUATION;
D O I
10.1007/s12220-023-01437-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Bopp-Podolsky system with convolution nonlinearity:{-Delta u + V(x)u + phi u = (I-alpha * F(u)) f(u), in R-3,-Delta phi+a(2)Delta(2)phi=4 pi u(2), in R-3,where alpha is an element of(0,2), I-alpha:R-3 -> R is the Riesz potential, V is an element of C (R-3, [0,infinity)), V-infinity = infinity, where sigma = alpha + 6/4. Through careful analysis of the nonlinear terms, we prove that the existence of ground state solutions and positive minimal energy solutions for the above system.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Existence and Multiplicity of Solutions for the Schrodinger-Bopp-Podolsky System
    Peng, Xueqin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3423 - 3468
  • [2] The Existence of Ground State Solutions for a Schrödinger–Bopp–Podolsky System with Convolution Nonlinearity
    Yao Xiao
    Sitong Chen
    Muhua Shu
    The Journal of Geometric Analysis, 2023, 33
  • [3] Ground state solutions of the non-autonomous Schrodinger-Bopp-Podolsky system
    Chen, Sitong
    Li, Lin
    Radulescu, Vicentiu D.
    Tang, Xianhua
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [4] Existence and concentration behavior of solutions for the logarithmic Schrodinger-Bopp-Podolsky system
    Peng, Xueqin
    Jia, Gao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [5] GROUND STATE SOLUTIONS FOR NONLINEAR SCHRODINGER-BOPP-PODOLSKY BOPP-PODOLSKY SYSTEMS WITH NONPERIODIC POTENTIALS
    Jiang, Qiaoyun
    Li, Lin
    Chen, Shangjie
    Siciliano, Gaetano
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (43) : 1 - 25
  • [6] Ground State Solutions for the Nonlinear Schrodinger-Bopp-Podolsky System with Critical Sobolev Exponent
    Li, Lin
    Pucci, Patrizia
    Tang, Xianhua
    ADVANCED NONLINEAR STUDIES, 2020, 20 (03) : 511 - 538
  • [7] NEHARI TYPE GROUND STATE SOLUTION FOR SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Li, Lin
    Tang, Xianhua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 139 - 152
  • [8] Existence and asymptotic behaviour of positive ground state solution for critical Schrodinger-Bopp-Podolsky system
    Liu, Senli
    Chen, Haibo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2138 - 2164
  • [9] Sign-changing solutions for Schrodinger-Bopp-Podolsky system with general nonlinearity
    Zhang, Qi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [10] EXISTENCE AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR A SCHRODINGER-BOPP-PODOLSKY SYSTEM
    Wang, Lixiong
    Chen, Haibo
    Liu, Senli
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 59 (2B) : 913 - 940