The Existence of Ground State Solutions for a Schrodinger-Bopp-Podolsky System with Convolution Nonlinearity

被引:2
|
作者
Xiao, Yao [1 ]
Chen, Sitong [1 ]
Shu, Muhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Bopp-Podolsky system; Ground state solution; Nehari-Pohozaev manifold; Concentration-compactness; KLEIN-GORDON-MAXWELL; EQUATION;
D O I
10.1007/s12220-023-01437-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Bopp-Podolsky system with convolution nonlinearity:{-Delta u + V(x)u + phi u = (I-alpha * F(u)) f(u), in R-3,-Delta phi+a(2)Delta(2)phi=4 pi u(2), in R-3,where alpha is an element of(0,2), I-alpha:R-3 -> R is the Riesz potential, V is an element of C (R-3, [0,infinity)), V-infinity = infinity, where sigma = alpha + 6/4. Through careful analysis of the nonlinear terms, we prove that the existence of ground state solutions and positive minimal energy solutions for the above system.
引用
收藏
页数:28
相关论文
共 50 条