Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit

被引:1
|
作者
Damian, Heydy M. Santos [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Do Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Bari Aldo Moro, Dept Matemat, Via E Orabona 4, I-70125 Bari, Italy
基金
巴西圣保罗研究基金会;
关键词
35J10; 35J50; 35Q60; EXISTENCE; EQUATIONS; STATES;
D O I
10.1007/s00526-024-02775-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following critical Schrodinger-Bopp-Podolsky system {-& varepsilon;(2)Delta u+V(x)u+Q(x)phi u=h(x,u)+K(x)|u|(4)u in R-3 (-)Delta phi+a(2)Delta(2)phi=4 pi Q(x)u(2 )in R-3 in the unknowns u,phi:R-3 -> R and where epsilon,a>0 are parameters. The functions V, K, Q satisfy suitable assumptions as well as the nonlinearity h which is subcritical. For any fixed a>0, we show existence of "small" solutions in the semiclassical limit, namely whenever epsilon -> 0. We give also estimates of the norm of this solutions in terms of epsilon. Moreover, we show also that fixed epsilon suitably small, when a -> 0 the solutions found strongly converge to solutions of the Schr & ouml;dinger-Poisson system.
引用
收藏
页数:23
相关论文
共 50 条