ON THE DENSITY OF SUMSETS, II

被引:0
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ON THE DENSITY OF SUMSETS, II
    Leonetti, Paolo
    Tringali, Salvatore
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 414 - 419
  • [2] On the density of sumsets
    Leonetti, Paolo
    Tringali, Salvatore
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (03): : 565 - 580
  • [3] On the density of sumsets
    Paolo Leonetti
    Salvatore Tringali
    Monatshefte für Mathematik, 2022, 198 : 565 - 580
  • [4] On the Schnirelmann density of sumsets
    Hegedüs, P
    Piroska, G
    Ruzsa, IZ
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 333 - 345
  • [5] On the density of sumsets and product sets
    Hegyvari, Norbert
    Hennecart, Francois
    Pach, Peter Pal
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 1 - 16
  • [6] High density piecewise syndeticity of sumsets
    Di Nasso, Mauro
    Goldbring, Isaac
    Jin, Renling
    Leth, Steven
    Lupini, Martino
    Mahlburg, Karl
    ADVANCES IN MATHEMATICS, 2015, 278 : 1 - 33
  • [7] INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY
    Kra, Bryna
    Moreira, Joel
    Richter, Florian K.
    Robertson, Donald
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 37 (03) : 637 - 682
  • [8] On the density or measure of sets and their sumsets in the integers or the circle
    Bienvenu, Pierre-Yves
    Hennecart, Francois
    JOURNAL OF NUMBER THEORY, 2020, 212 : 285 - 310
  • [9] Inverse Additive Problems for Minkowski Sumsets II
    Freiman, G. A.
    Grynkiewicz, D.
    Serra, O.
    Stanchescu, Y. V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (01) : 395 - 414
  • [10] Inverse Additive Problems for Minkowski Sumsets II
    G. A. Freiman
    D. Grynkiewicz
    O. Serra
    Y. V. Stanchescu
    Journal of Geometric Analysis, 2013, 23 : 395 - 414