ON THE DENSITY OF SUMSETS, II

被引:0
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ON ARITHMETIC PROPERTIES OF SUMSETS
    Balog, A.
    Rivat, J.
    Sarkoezy, A.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 18 - 42
  • [42] Sumsets and Projective Curves
    J. Elias
    Mediterranean Journal of Mathematics, 2022, 19
  • [43] Sumsets of sparse sets
    Dubickas, Arturas
    Sarka, Paulius
    PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) : 169 - 179
  • [44] Sumsets and Veronese varieties
    Liena Colarte-Gómez
    Joan Elias
    Rosa M. Miró-Roig
    Collectanea Mathematica, 2023, 74 : 353 - 374
  • [45] On Sumsets of Subsets of Squares
    Tomasz Schoen
    Proceedings of the Steklov Institute of Mathematics, 2021, 314 : 300 - 306
  • [46] Sumsets in the set of squares
    Elsholtz, Christian
    Wurzinger, Lena
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (04): : 1243 - 1254
  • [47] On sumsets and spectral gaps
    Croot, Ernie
    Schoen, Tomasz
    ACTA ARITHMETICA, 2009, 136 (01) : 47 - 55
  • [48] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [49] Sumsets of semiconvex sets
    Ruzsa, Imre
    Solymosi, Jozsef
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (01): : 84 - 94
  • [50] On Sumsets of Subsets of Squares
    Schoen, Tomasz
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 314 (01) : 300 - 306