ON THE DENSITY OF SUMSETS, II

被引:0
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On the structure of the sumsets
    Wu, Jian-Dong
    Chen, Feng-Juan
    Chen, Yong-Gao
    DISCRETE MATHEMATICS, 2011, 311 (06) : 408 - 412
  • [22] Chromatic sumsets
    Nathanson, Melvyn B.
    JOURNAL OF NUMBER THEORY, 2021, 219 : 93 - 108
  • [23] Sumsets and Entropy
    Ruzsa, Imre Z.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 34 (01) : 1 - 10
  • [24] On the Digits of Sumsets
    Mauduit, Christian
    Rivat, Joel
    Sarkozy, Andras
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (03): : 595 - 612
  • [25] Primes in sumsets
    Mallesham, Kummari
    ARCHIV DER MATHEMATIK, 2018, 110 (02) : 131 - 143
  • [26] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [27] Sumsets being squares
    Andrej Dujella
    Christian Elsholtz
    Acta Mathematica Hungarica, 2013, 141 : 353 - 357
  • [28] SUMSETS IN DIFFERENCE SETS
    Bergelson, Vitaly
    Ruzsa, Imre Z.
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 174 (01) : 1 - 18
  • [29] On common energies and sumsets
    Shkredov, I. D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 213
  • [30] Monochromatic infinite sumsets
    Leader, Imre
    Russell, Paul A.
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 467 - 472