ON THE DENSITY OF SUMSETS, II

被引:0
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页数:6
相关论文
共 50 条
  • [31] On arithmetic properties of sumsets
    A. Balog
    J. Rivat
    A. Sárközy
    Acta Mathematica Hungarica, 2014, 144 : 18 - 42
  • [32] On the Dimension of Iterated Sumsets
    Schmeling, Jorg
    Shmerkin, Pablo
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 55 - +
  • [33] On Sumsets and Convex Hull
    Boeroeczky, Karoly J.
    Santos, Francisco
    Serra, Oriol
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 705 - 729
  • [34] Sumsets and Projective Curves
    Elias, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [35] On Sumsets of Convex Sets
    Schoen, Tomasz
    Shkredov, Ilya D.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 793 - 798
  • [36] Iterated sumsets and setpartitions
    David J. Grynkiewicz
    The Ramanujan Journal, 2020, 52 : 499 - 518
  • [37] On sumsets in Euclidean space
    Fainleib, AS
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 121 - 133
  • [38] Sumsets being squares
    Dujella, A.
    Elsholtz, C.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (04) : 353 - 357
  • [39] Sumsets and Veronese varieties
    Colarte-Gomez, Liena
    Elias, Joan
    Miro-Roig, Rosa M.
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 353 - 374
  • [40] Projections, entropy and sumsets
    Paul Balister
    Béla Bollobás
    Combinatorica, 2012, 32 : 125 - 141