ON THE DENSITY OF SUMSETS, II

被引:0
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页数:6
相关论文
共 50 条
  • [11] A Note on Sumsets and Restricted Sumsets
    Bhanja, Jagannath
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (04)
  • [12] Sumsets as Unions of Sumsets of Subsets
    Ellenberg, Jordan S.
    DISCRETE ANALYSIS, 2017, : 1 - 5
  • [13] Bohr sets in sumsets II: countable abelian groups
    Griesmer, John T.
    Le, Anh N.
    Le, Thai Hoang
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [14] SOME REMARKS ON SUMSETS AND RESTRICTED SUMSETS
    Tang, Min
    Wang, Wenhui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 667 - 673
  • [15] Sumsets
    Ruzsa, IZ
    European Congress of Mathematics, 2005, : 381 - 389
  • [16] Convexity and sumsets
    Elekes, G
    Nathanson, MB
    Ruzsa, IZ
    JOURNAL OF NUMBER THEORY, 2000, 83 (02) : 194 - 201
  • [17] Primes in sumsets
    Kummari Mallesham
    Archiv der Mathematik, 2018, 110 : 131 - 143
  • [18] Infinite unrestricted sumsets of the form B plus B in sets with large density
    Kousek, Ioannis
    Radic, Tristan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (01) : 48 - 68
  • [19] On cardinality of sumsets
    Garaev, MZ
    Kueh, KL
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 78 : 221 - 226
  • [20] MONOCHROMATIC SUMSETS
    ERDOS, P
    SPENCER, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 50 (01) : 162 - 163