Inverse Additive Problems for Minkowski Sumsets II

被引:2
|
作者
Freiman, G. A. [1 ]
Grynkiewicz, D. [2 ]
Serra, O. [3 ]
Stanchescu, Y. V. [4 ,5 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, Graz, Austria
[3] Univ Politecn Cataluna, Dept Matemat Aplicada 4, Barcelona, Spain
[4] Open Univ Israel, IL-43107 Raanana, Israel
[5] Afeka Acad Coll, IL-69107 Tel Aviv, Israel
基金
奥地利科学基金会;
关键词
Brunn-Minkowski; Convex bodies; Sumset; Convex functions; INEQUALITY;
D O I
10.1007/s12220-011-9251-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Brunn-Minkowski Theorem asserts that mu(d)(A+B)(1/d) >=mu(d)(A)(1/d) + mu(d)(B)(1/d) for convex bodies A, B subset of R-d , where mu(d) denotes the d-dimensional Lebesgue measure. It is well known that equality holds if and only if A and B are homothetic, but few characterizations of equality in other related bounds are known. Let H be a hyperplane. Bonnesen later strengthened this bound by showing mu(d)(A+B)(1/d) >=(M1/(d-1)+N1/(d-1))(d-1) (mu(d)(A)/M + mu(d)(B)/N), where M = sup{mu(d-1)((x + H)boolean AND A) vertical bar x is an element of R-d} and N = sup{mu(d-1)((y + H)boolean AND B) vertical bar y is an element of R-d}. Standard compression arguments show that the above bound also holds when M = mu(d-1)(pi(A)) and N = mu (d-1)(pi(B)), where pi denotes a projection of R-d onto H, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this latter bound, showing that equality holds if and only if A and B are obtained from a pair of homothetic convex bodies by 'stretching' along the direction of the projection, which is made formal in the paper. When d = 2, we characterize the case of equality in the former bound as well.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 50 条
  • [1] Inverse Additive Problems for Minkowski Sumsets II
    G. A. Freiman
    D. Grynkiewicz
    O. Serra
    Y. V. Stanchescu
    Journal of Geometric Analysis, 2013, 23 : 395 - 414
  • [2] Inverse additive problems for Minkowski sumsets I
    Freiman, G. A.
    Grynkiewicz, D.
    Serra, O.
    Stanchescu, Y. V.
    COLLECTANEA MATHEMATICA, 2012, 63 (03) : 261 - 286
  • [3] Inverse additive problems for Minkowski sumsets I
    G. A. Freiman
    D. Grynkiewicz
    O. Serra
    Y. V. Stanchescu
    Collectanea Mathematica, 2012, 63 : 261 - 286
  • [4] On direct and inverse problems related to some dilated sumsets
    Kaur, Ramandeep
    Singh, Sandeep
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [5] DIRECT AND INVERSE PROBLEMS FOR RESTRICTED SIGNED SUMSETS IN INTEGERS
    Bhanja, Jagannath
    Komatsu, Takao
    Pandey, Ram Krishna
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 28 - 46
  • [6] Additive structures in sumsets
    Sanders, Tom
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 289 - 316
  • [7] SOME INVERSE RESULTS OF SUMSETS
    Tang, Min
    Xing, Yun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 305 - 313
  • [8] AN ADDITIVE THEOREM AND RESTRICTED SUMSETS
    Sun, Zhi-Wei
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (5-6) : 1263 - 1276
  • [9] ON THE DENSITY OF SUMSETS, II
    Leonetti, Paolo
    Tringali, Salvatore
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023,
  • [10] ON THE DENSITY OF SUMSETS, II
    Leonetti, Paolo
    Tringali, Salvatore
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 414 - 419