Inverse Additive Problems for Minkowski Sumsets II

被引:2
|
作者
Freiman, G. A. [1 ]
Grynkiewicz, D. [2 ]
Serra, O. [3 ]
Stanchescu, Y. V. [4 ,5 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, Graz, Austria
[3] Univ Politecn Cataluna, Dept Matemat Aplicada 4, Barcelona, Spain
[4] Open Univ Israel, IL-43107 Raanana, Israel
[5] Afeka Acad Coll, IL-69107 Tel Aviv, Israel
基金
奥地利科学基金会;
关键词
Brunn-Minkowski; Convex bodies; Sumset; Convex functions; INEQUALITY;
D O I
10.1007/s12220-011-9251-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Brunn-Minkowski Theorem asserts that mu(d)(A+B)(1/d) >=mu(d)(A)(1/d) + mu(d)(B)(1/d) for convex bodies A, B subset of R-d , where mu(d) denotes the d-dimensional Lebesgue measure. It is well known that equality holds if and only if A and B are homothetic, but few characterizations of equality in other related bounds are known. Let H be a hyperplane. Bonnesen later strengthened this bound by showing mu(d)(A+B)(1/d) >=(M1/(d-1)+N1/(d-1))(d-1) (mu(d)(A)/M + mu(d)(B)/N), where M = sup{mu(d-1)((x + H)boolean AND A) vertical bar x is an element of R-d} and N = sup{mu(d-1)((y + H)boolean AND B) vertical bar y is an element of R-d}. Standard compression arguments show that the above bound also holds when M = mu(d-1)(pi(A)) and N = mu (d-1)(pi(B)), where pi denotes a projection of R-d onto H, which gives an alternative generalization of the Brunn-Minkowski bound. In this paper, we characterize the cases of equality in this latter bound, showing that equality holds if and only if A and B are obtained from a pair of homothetic convex bodies by 'stretching' along the direction of the projection, which is made formal in the paper. When d = 2, we characterize the case of equality in the former bound as well.
引用
收藏
页码:395 / 414
页数:20
相关论文
共 50 条
  • [41] Extension and generalization properties of the weighted Minkowski inverse in a Minkowski space for an arbitrary matrix
    Al-Zhour, Zeyad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) : 954 - 961
  • [42] The generalization of Minkowski problems for polytopes
    Li, Ai-Jun
    GEOMETRIAE DEDICATA, 2014, 168 (01) : 245 - 264
  • [43] Affine dual Minkowski problems
    Cai, Xiaxing
    Leng, Gangsong
    Wu, Yuchi
    Xi, Dongmeng
    ADVANCES IN MATHEMATICS, 2025, 467
  • [44] The generalization of Minkowski problems for polytopes
    Ai-Jun Li
    Geometriae Dedicata, 2014, 168 : 245 - 264
  • [45] Minkowski Additive Operators Under Volume Constraints
    Judit Abardia-Evéquoz
    Andrea Colesanti
    Eugenia Saorín-Gómez
    The Journal of Geometric Analysis, 2018, 28 : 2422 - 2455
  • [46] Minkowski Additive Operators Under Volume Constraints
    Abardia-Evequoz, Judit
    Colesanti, Andrea
    Saorin-Gomez, Eugenia
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2422 - 2455
  • [47] INVERSE PROBLEMS OF ADDITIVE THEORY OF NUMBERS - ADDITION OF SETS OF RESIDUES MOD P
    FREIMAN, GA
    DOKLADY AKADEMII NAUK SSSR, 1961, 141 (03): : 571 - &
  • [48] Bohr sets in sumsets II: countable abelian groups
    Griesmer, John T.
    Le, Anh N.
    Le, Thai Hoang
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [49] The m-WG° inverse in the Minkowski space
    Liu, Xiaoji
    Zhang, Kaiyue
    Jin, Hongwei
    OPEN MATHEMATICS, 2023, 21 (01):
  • [50] The m-WG Inverse in Minkowski Space
    Wu, Hui
    Wang, Hongxing
    Jin, Hongwei
    FILOMAT, 2022, 36 (04) : 1125 - 1141