Minkowski Additive Operators Under Volume Constraints

被引:4
|
作者
Abardia-Evequoz, Judit [1 ]
Colesanti, Andrea [2 ]
Saorin-Gomez, Eugenia [3 ]
机构
[1] Goethe Univ Frankfurt Main, Inst Math, Robert Mayer Str 10, D-60054 Frankfurt, Germany
[2] Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Univ Magdeburg, Inst Algebra & Geometrie, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Minkowski endomorphism; Rogers-Shephard inequality; Monotonicity; Difference body; SO(n)-equivariance; VALUATIONS; INVARIANT; TRANSFORMATIONS;
D O I
10.1007/s12220-017-9909-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Minkowski additive, continuous, and translation invariant operators : Kn. Kn defined on the family of convex bodies such that the volume of the image (K) is bounded from above and below by multiples of the volume of the convex body K, uniformly in K. We obtain a representation result for an infinite subcone contained in the cone formed by this type of operators. Under the additional assumption of monotonicity or SO(n)- equivariance, we obtain new characterization results for the difference body operator.
引用
收藏
页码:2422 / 2455
页数:34
相关论文
共 50 条
  • [1] Minkowski Additive Operators Under Volume Constraints
    Judit Abardia-Evéquoz
    Andrea Colesanti
    Eugenia Saorín-Gómez
    The Journal of Geometric Analysis, 2018, 28 : 2422 - 2455
  • [2] Minkowski valuations under volume constraints
    Abardia-Evequoz, Judit
    Colesanti, Andrea
    Gomez, Eugenia Saorin
    ADVANCES IN MATHEMATICS, 2018, 333 : 118 - 158
  • [3] Radial Minkowski additive operators
    Lewen Ji
    Czechoslovak Mathematical Journal, 2021, 71 : 641 - 654
  • [4] Radial Minkowski Additive Operators
    Ji, Lewen
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 641 - 654
  • [5] QoS multicast aggregation under multiple additive constraints
    Ben Ali, N.
    Belghith, A.
    Moulierac, J.
    Molnar, M.
    COMPUTER COMMUNICATIONS, 2008, 31 (15) : 3564 - 3578
  • [6] Large Steklov Eigenvalues Under Volume Constraints
    Girouard, Alexandre
    Polymerakis, Panagiotis
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [7] Minkowski operators for voxel based sculpting
    Indian Inst of Science, Bangalore, India
    Comput Graphics (Pergamon), 5 (593-600):
  • [8] A NEW IMPLEMENTATION FOR THE BINARY AND MINKOWSKI OPERATORS
    YOUNG, IT
    PEVERINI, RL
    VERBEEK, PW
    VANOTTERLOO, PJ
    COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 17 (03): : 189 - 210
  • [9] ADDITIVE OPERATORS
    WOYCZYNSKI, WA
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (07): : 447 - +
  • [10] Minkowski operators for voxel based sculpting
    Sethia, S
    Manohar, S
    COMPUTERS & GRAPHICS, 1998, 22 (05) : 593 - 600