Minkowski Additive Operators Under Volume Constraints

被引:4
|
作者
Abardia-Evequoz, Judit [1 ]
Colesanti, Andrea [2 ]
Saorin-Gomez, Eugenia [3 ]
机构
[1] Goethe Univ Frankfurt Main, Inst Math, Robert Mayer Str 10, D-60054 Frankfurt, Germany
[2] Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Univ Magdeburg, Inst Algebra & Geometrie, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Minkowski endomorphism; Rogers-Shephard inequality; Monotonicity; Difference body; SO(n)-equivariance; VALUATIONS; INVARIANT; TRANSFORMATIONS;
D O I
10.1007/s12220-017-9909-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Minkowski additive, continuous, and translation invariant operators : Kn. Kn defined on the family of convex bodies such that the volume of the image (K) is bounded from above and below by multiples of the volume of the convex body K, uniformly in K. We obtain a representation result for an infinite subcone contained in the cone formed by this type of operators. Under the additional assumption of monotonicity or SO(n)- equivariance, we obtain new characterization results for the difference body operator.
引用
收藏
页码:2422 / 2455
页数:34
相关论文
共 50 条
  • [41] Algorithms for computing Minkowski operators and their application in differential games
    Dvurechensky, P. E.
    Ivanov, G. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (02) : 235 - 264
  • [42] Algorithms for computing Minkowski operators and their application in differential games
    P. E. Dvurechensky
    G. E. Ivanov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 235 - 264
  • [43] INVARIANT DIFFERENTIAL OPERATORS ON THE MINKOWSKI-EUCLID SPACE
    Yang, Jae-Hyun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) : 275 - 306
  • [44] A New Minkowski Distance Based on Induced Aggregation Operators
    Merigo, Jose M.
    Casanovas, Montserrat
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2011, 4 (02) : 123 - 133
  • [45] A New Minkowski Distance Based on Induced Aggregation Operators
    José M. Merigó
    Montserrat Casanovas
    International Journal of Computational Intelligence Systems, 2011, 4 (2) : 123 - 133
  • [46] Link-disjoint routing algorithm under multiple additive QoS constraints
    Xiong, Ke
    Qiu, Zheng-Ding
    Zhang, Yu
    Zhang, Hong-Ke
    Tongxin Xuebao/Journal on Communications, 2010, 31 (06): : 127 - 135
  • [47] Dual Brunn–Minkowski inequality for volume differences
    Songjun Lv
    Geometriae Dedicata, 2010, 145 : 169 - 180
  • [48] Radial Blaschke–Minkowski homomorphisms and volume differences
    Changjian Zhao
    Wing-Sum Cheung
    Geometriae Dedicata, 2011, 154 : 81 - 91
  • [49] Minkowski sum volume minimization for convex polyhedra
    Tuzikov, AV
    Sheynin, SA
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 2000, 18 : 33 - 40
  • [50] The Brunn-Minkowski inequality for volume differences
    Leng, GS
    ADVANCES IN APPLIED MATHEMATICS, 2004, 32 (03) : 615 - 624