Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:4
|
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [21] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [22] Deep Learning for Spatio-Temporal Modeling of Dynamic Spontaneous Emotions
    Al Chanti, Dawood
    Caplier, Alice
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 363 - 376
  • [23] A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data
    Lin, Lei
    Meng, Yu
    Yue, Anzhi
    Yuan, Yuan
    Liu, Xiaoyi
    Chen, Jingbo
    Zhang, Mengmeng
    Chen, Jiansheng
    REMOTE SENSING, 2016, 8 (05):
  • [24] Deep Learning Aided Interpolation of Spatio-Temporal Nonstationary Data
    Kodera, Sayako
    Romer, Florian
    Perez, Eduardo
    Kirchhof, Jan
    Krieg, Fabian
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2221 - 2225
  • [25] Spatio-Temporal Abnormal Behavior Prediction in Elderly Persons Using Deep Learning Models
    Zerkouk, Meriem
    Chikhaoui, Belkacem
    SENSORS, 2020, 20 (08)
  • [26] Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
    Hu, R.
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    JOURNAL OF HYDROLOGY, 2019, 575 : 911 - 920
  • [27] Spatio-temporal water height prediction for dam break flows using deep learning
    Deng, Yangyu
    Zhang, Di
    Cao, Ze
    Liu, Yakun
    OCEAN ENGINEERING, 2024, 302
  • [28] MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION
    Tan, Tian
    Venugopal, Vengatesan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [29] Prediction of spatio-temporal AQI data
    Kim, Kyeong Eun
    Ma, Mi Ru
    Lee, Kyeong Won
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (02) : 119 - 133
  • [30] Spatio-temporal analysis of forest modeling in Mexico
    Martinez-Santiago, Saira Y.
    Alvarado-Segura, Arturo A.
    Zamudio-Sanchez, Francisco J.
    Cristobal-Acevedo, David
    REVISTA CHAPINGO SERIE CIENCIAS FORESTALES Y DEL AMBIENTE, 2017, 23 (01) : 5 - 22