Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:4
|
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [41] Deep Learning Based Video Spatio-Temporal Modeling for Emotion Recognition
    Fonnegra, Ruben D.
    Diaz, Gloria M.
    HUMAN-COMPUTER INTERACTION: THEORIES, METHODS, AND HUMAN ISSUES, HCI INTERNATIONAL 2018, PT I, 2018, 10901 : 397 - 408
  • [42] Spatio-temporal analysis of forest fire risk and danger using Landsat imagery
    Saglam, Buelent
    Bilgili, Ertugrul
    Durmaz, Bahar Dinc
    Kadiogullari, Ali Ihsan
    Kucuk, Omer
    SENSORS, 2008, 8 (06) : 3970 - 3987
  • [43] A Dynamic Pipeline for Spatio-Temporal Fire Risk Prediction
    Walia, Bhavkaran Singh
    Hu, Qianyi
    Chen, Jeffrey
    Chen, Fangyan
    Lee, Jessica
    Kuo, Nathan
    Narang, Palak
    Batts, Lt. Jason
    Arnold, Geoffrey
    Madaio, Michael
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 764 - 773
  • [44] Porosity prediction using a deep learning method based on bidirectional spatio-temporal neural network
    Wang, Jun
    Cao, Junxing
    Yuan, Shan
    Xu, Hanqing
    Zhou, Peng
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 228
  • [45] Adaptive Context Based Road Accident Risk Prediction Using Spatio-Temporal Deep Learning
    Bhardwaj N.
    Pal A.
    Bhumika
    Das D.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2872 - 2883
  • [46] Spatio-Temporal Agnostic Sampling for Imbalanced Multivariate Seasonal Time Series Data: A Study on Forest Fires
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Naik, Kshirasagar
    Zaman, Marzia
    Ajila, Samuel A.
    Ravichandran, Thambirajah
    Purcell, Richard
    Sampalli, Srinivas
    SENSORS, 2025, 25 (03)
  • [47] Deep Learning at the Interface of Agricultural Insurance Risk and Spatio-Temporal Uncertainty in Weather Extremes
    Ghahari, Azar
    Newlands, Nathaniel K.
    Lyubchich, Vyacheslav
    Gel, Yulia R.
    NORTH AMERICAN ACTUARIAL JOURNAL, 2019, 23 (04) : 535 - 550
  • [48] Approach of the spatio-temporal prediction using vectorial geographic data
    MezzadriCenteno, T
    SaintJoan, D
    Desachy, J
    Vidal, F
    REMOTE SENSING FOR GEOGRAPHY, GEOLOGY, LAND PLANNING, AND CULTURAL HERITAGE, 1996, 2960 : 96 - 103
  • [49] Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning
    A, Yinglan
    Jiang, Xiaoman
    Wang, Yuntao
    Wang, Libo
    Zhang, Zihao
    Duan, Limin
    Fang, Qingqing
    JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 258
  • [50] Forest Fire Spread Prediction using Deep Learning
    Khennou, Fadoua
    Ghaoui, Jade
    Akhloufi, Moulay A.
    GEOSPATIAL INFORMATICS XI, 2021, 11733