Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:4
|
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [31] Scalable data-driven modeling of spatio-temporal systems: Weather forecasting
    Moshki, Mohsen
    Kabiri, Peyman
    Mohebalhojeh, Alireza
    INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 577 - 595
  • [32] Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models
    Varghese, Ken Koshy
    Mahdaviabbasabad, Sajjad
    Gentile, Guido
    Eldafrawi, Mohamed
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2023, 24 (01) : 22 - 32
  • [33] Cross-City Transfer Learning for Deep Spatio-Temporal Prediction
    Wang, Leye
    Geng, Xu
    Ma, Xiaojuan
    Liu, Feng
    Yang, Qiang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1893 - 1899
  • [34] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    ENERGIES, 2018, 11 (04)
  • [35] Urban Fire Situation Forecasting: Deep sequence learning with spatio-temporal dynamics
    Jin, Guangyin
    Wang, Qi
    Zhu, Cunchao
    Feng, Yanghe
    Huang, Jincai
    Hu, Xingchen
    APPLIED SOFT COMPUTING, 2020, 97
  • [36] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478
  • [37] A spatio-temporal network for human activity prediction based on deep learning
    Li J.
    Liu H.
    Guo W.
    Chen X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (04): : 522 - 531
  • [38] Robust Spatio-Temporal Purchase Prediction via Deep Meta Learning
    Qin, Huiling
    Ke, Songyu
    Yang, Xiaodu
    Xu, Haoran
    Zhan, Xianyuan
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4312 - 4319
  • [39] A spatio-temporal network for landslide displacement prediction based on deep learning
    Luo H.
    Jiang Y.
    Xu Q.
    Liao L.
    Yan A.
    Liu C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2160 - 2170
  • [40] Comparative Presentation of Machine Learning Algorithms in Flood Prediction Using Spatio-Temporal Data
    Jangyodsuk, Piraporn
    Seo, Dong-Jun
    Elmasri, Ramez
    Gao, Jean
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2016, 386 : 1015 - 1023