Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:4
|
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [11] Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data
    Ge, Xingtong
    Yang, Yi
    Peng, Ling
    Chen, Luanjie
    Li, Weichao
    Zhang, Wenyue
    Chen, Jiahui
    REMOTE SENSING, 2022, 14 (14)
  • [12] Estimation and prediction of weather variables from surveillance data using spatio-temporal Kriging
    Dalmau, Ramon
    Perez-Batlle, Marc
    Prats, Xavier
    2017 IEEE/AIAA 36TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2017,
  • [13] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700
  • [14] Drought prediction in Jilin Province based on deep learning and spatio-temporal sequence modeling
    Hou, Zhaojun
    Wang, Beibei
    Zhang, Yichen
    Zhang, Jiquan
    Song, Jingyuan
    JOURNAL OF HYDROLOGY, 2024, 642
  • [15] Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction
    Zhang, Lei
    Li, Dong
    Guo, Quansheng
    IEEE ACCESS, 2020, 8 : 66037 - 66047
  • [16] Spatio-temporal trends in fire weather in the French Alps
    Dupire, S.
    Curt, T.
    Bigot, S.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 595 : 801 - 817
  • [17] DeepOcean: A General Deep Learning Framework for Spatio-Temporal Ocean Sensing Data Prediction
    Gou, Yu
    Zhang, Tong
    Liu, Jun
    Wei, Li
    Cui, Jun-Hong
    IEEE ACCESS, 2020, 8 : 79192 - 79202
  • [18] A Spatio-Temporal Data Modelling Method for Travel Time Prediction Based on Deep Learning
    Chen, Chi-Hua
    Lo, Chi-Lun
    Kuan, Ta-Sheng
    Lo, Kuen-Rong
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 277 - 278
  • [19] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [20] Spatio-Temporal Deep Learning for Ocean Current Prediction Based on HF Radar Data
    Thongniran, Nathachai
    Vateekul, Peerapon
    Jitkajornwanich, Kulsawasd
    Lawawirojwong, Siam
    Srestasathiern, Panu
    2019 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2019), 2019, : 254 - 259