Estimation and prediction of weather variables from surveillance data using spatio-temporal Kriging

被引:0
|
作者
Dalmau, Ramon [1 ]
Perez-Batlle, Marc [1 ]
Prats, Xavier [1 ]
机构
[1] Tech Univ Catalonia, Dept Phys, Aeronaut Div, Telecommun & Aerosp Engn Sch Castelldefels, Castelldefels 08860, Spain
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
State-of-the-art weather data obtained from numerical weather predictions are unlikely to satisfy the requirements of the future air traffic management system. A potential approach to improve the resolution and accuracy of the weather predictions could consist on using airborne aircraft as meteorological sensors, which would provide up-to-date weather observations to the surrounding aircraft and ground systems. This paper proposes to use Kriging, a geostatistical interpolation technique, to create short-term weather predictions from scattered weather observations derived from surveillance data. Results show that this method can accurately capture the spatio-temporal distribution of the temperature and wind fields, allowing to obtain high-quality local, short-term weather predictions and providing at the same time a measure of the uncertainty associated with the prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Crimes Prediction Using Spatio-Temporal Data and Kernel Density Estimation
    Putri, Vinnia Kemala
    Kurniadi, Felix Indra
    2019 ASIA PACIFIC CONFERENCE ON RESEARCH IN INDUSTRIAL AND SYSTEMS ENGINEERING (APCORISE), 2019, : 18 - 23
  • [2] PREDICTION AND IMPUTATION OF SPATIO-TEMPORAL DATA: DENGUE SURVEILLANCE IN THAILAND
    Lessler, J.
    Reich, N. G.
    Iamsirithaworn, S.
    Cummings, D. A. T.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S183 - S183
  • [3] Spatio-temporal prediction of land surface temperature using semantic kriging
    Bhattacharjee, Shrutilipi
    Chen, Jia
    Ghosh, Soumya K.
    TRANSACTIONS IN GIS, 2020, 24 (01) : 189 - 212
  • [4] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [5] Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Ajila, Samuel A.
    Zaman, Marzia
    Naik, Kshirasagar
    Purcell, Richard
    Sampalli, Srinivas
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 346 - 351
  • [6] Customer pose estimation using orientational spatio-temporal network from surveillance camera
    Jingwen Liu
    Yanlei Gu
    Shunsuke Kamijo
    Multimedia Systems, 2018, 24 : 439 - 457
  • [7] Customer pose estimation using orientational spatio-temporal network from surveillance camera
    Liu, Jingwen
    Gu, Yanlei
    Kamijo, Shunsuke
    MULTIMEDIA SYSTEMS, 2018, 24 (04) : 439 - 457
  • [8] Spatio-temporal estimation of climatic variables for gap filling and record extension using Reanalysis data
    Morales-Moraga, David
    Meza, Francisco J.
    Miranda, Marcelo
    Gironas, Jorge
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 137 (1-2) : 1089 - 1104
  • [9] Spatio-temporal estimation of climatic variables for gap filling and record extension using Reanalysis data
    David Morales-Moraga
    Francisco J. Meza
    Marcelo Miranda
    Jorge Gironás
    Theoretical and Applied Climatology, 2019, 137 : 1089 - 1104
  • [10] Prediction of spatio-temporal AQI data
    Kim, Kyeong Eun
    Ma, Mi Ru
    Lee, Kyeong Won
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (02) : 119 - 133