Estimation and prediction of weather variables from surveillance data using spatio-temporal Kriging

被引:0
|
作者
Dalmau, Ramon [1 ]
Perez-Batlle, Marc [1 ]
Prats, Xavier [1 ]
机构
[1] Tech Univ Catalonia, Dept Phys, Aeronaut Div, Telecommun & Aerosp Engn Sch Castelldefels, Castelldefels 08860, Spain
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
State-of-the-art weather data obtained from numerical weather predictions are unlikely to satisfy the requirements of the future air traffic management system. A potential approach to improve the resolution and accuracy of the weather predictions could consist on using airborne aircraft as meteorological sensors, which would provide up-to-date weather observations to the surrounding aircraft and ground systems. This paper proposes to use Kriging, a geostatistical interpolation technique, to create short-term weather predictions from scattered weather observations derived from surveillance data. Results show that this method can accurately capture the spatio-temporal distribution of the temperature and wind fields, allowing to obtain high-quality local, short-term weather predictions and providing at the same time a measure of the uncertainty associated with the prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390
  • [22] SPATIO-TEMPORAL VARIATIONS OF SEVEN WEATHER VARIABLES IN IRAN: APPLICATION OF CRU TS AND GPCC DATA SETS†
    Ababaei, Behnam
    IRRIGATION AND DRAINAGE, 2020, 69 (01) : 164 - 185
  • [23] Enhancing Kriging with Inductive Spatio-Temporal GraphODE
    Sheykhzadeh, Amin
    Moshiri, Behzad
    Ghafar-Zadeh, Ebrahim
    2024 32ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEE 2024, 2024, : 915 - 921
  • [24] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan L.
    Hu T.
    Zhu X.
    Ye X.
    Wang S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [25] Spatio-Temporal Surveillance Using CUSUM of Order Statistics
    Sparks, Ross
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2015, 31 (08) : 1743 - 1760
  • [26] A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation
    Haitao Yuan
    Guoliang Li
    Data Science and Engineering, 2021, 6 : 63 - 85
  • [27] A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation
    Yuan, Haitao
    Li, Guoliang
    DATA SCIENCE AND ENGINEERING, 2021, 6 (01) : 63 - 85
  • [28] Weather extremes : A spatio-temporal perspectives
    Rathore, L. S.
    Pattanaik, D. R.
    Bran, S. C.
    MAUSAM, 2016, 67 (01): : 27 - 52
  • [29] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):
  • [30] Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning
    Mozafari, Mohsen
    Law, Andrew J.
    Goubran, Rafik A.
    Green, James R.
    SENSORS, 2024, 24 (19)