Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data

被引:4
|
作者
Mutakabbir, Abdul [1 ]
Lung, Chung-Horng [1 ]
Ajila, Samuel A. [1 ]
Zaman, Marzia [2 ]
Naik, Kshirasagar [3 ]
Purcell, Richard [4 ]
Sampalli, Srinivas [4 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Cistel Technol, Res & Dev, Ottawa, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Dalhousie Univ, Faculo7 Comp Sci, Halifax, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Forest Fires; Fire Weather Index; Machine Learning; Deep Learning; Data Sampling; Dataset Balancing; Big Data Analytics; Data Mining; LIGHTNING FIRE;
D O I
10.1109/COMPSAC57700.2023.00054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research provides a spatio-temporal agnostic framework based on subsampling to generate generic deep learning models using publicly available weather data and to predict the probability of forest fire and severity. The aim is to show that this framework can be used to subsample and generate a balanced dataset for generic deep learning models to improve predictions for forest fires. The framework works for binary classification and regression deep learning models. It also works with limited variations between fire and non-fire data. Using this framework, 45 of the binary classification models built produced an F1Score greater than 0.95 while 35 of 54 regression models produced an R2Score greater than 0.91.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [1] A Federated Learning Framework based on Spatio-Temporal Agnostic Subsampling (STAS) for Forest Fire Prediction
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Ajila, Samuel A.
    Naik, Kshirasagar
    Zaman, Marzia
    Purcell, Richard
    Sampalli, Srinivas
    Ravichandran, Thambirajah
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 350 - 359
  • [2] Integrated spatio-temporal data mining for forest fire prediction
    Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
    不详
    Trans. GIS, 2008, 5 (591-611): : 591 - 611
  • [3] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Federico Amato
    Fabian Guignard
    Sylvain Robert
    Mikhail Kanevski
    Scientific Reports, 10
  • [4] Microclimate spatio-temporal prediction using deep learning and land use data
    Han, Jintong
    Chong, Adrian
    Lim, Joie
    Ramasamy, Savitha
    Wong, Nyuk Hien
    Biljecki, Filip
    BUILDING AND ENVIRONMENT, 2024, 253
  • [5] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Amato, Federico
    Guignard, Fabian
    Robert, Sylvain
    Kanevski, Mikhail
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [7] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [8] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195
  • [9] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [10] Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models
    Nevavuori, Petteri
    Narra, Nathaniel
    Linna, Petri
    Lipping, Tarmo
    REMOTE SENSING, 2020, 12 (23) : 1 - 18