MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION

被引:0
|
作者
Tan, Tian [1 ]
Venugopal, Vengatesan [1 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Energy Syst, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Wave prediction; Deep learning; Machine learning; Informer; XGBoost;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Traditional methods of wave prediction, which are mainly reliant on extensive numerical simulations, such as the utilization of spectral wave models SWAN, WaveWatch III, or TOMAWAC, have prompted the question: Can faster wave prediction be achieved? The answer, as demonstrated by this study, lies in the advancements of machine learning and deep neural networks. In this research, the spatio-temporal relationship between wind and wave conditions is established using the XGBoost machine learning method and Informer deep neural networks. This approach enables effective predictions of wave height and wave period within the waters of the North Atlantic and northern Scotland. Ten years of hourly wind data from ECMWF ERA5 (2012-2021) is used as training data, while field measured wave parameters from CEFAS WaveNet buoys are employed for model training and verification. The final output enable a comparison that ultimately leads to wave predictions for the year 2022. Building upon this foundation, a versatile model for typical weather conditions and a specialized model for extreme weather scenarios are devised, facilitating more precise predictions. The data-driven model, rooted in wind data, proves adept at predicting wave characteristics across different times and locations. Notably, the trained machine learning and deep learning model delivers significant efficiency gains compared to traditional numerical models. One year's worth of data can be predicted within a few seconds by machine learning, whereas over 24 hours (on 16 logical CPUs) are required for the same prediction by TOMAWAC spectra wave model. This leap in training efficiency is a crucial development in the realm of wave prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [2] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [3] A spatio-temporal deep learning model for enhanced atmospheric correction
    Shah, Maitrik
    Raval, Mehul S.
    Divakaran, Srikrishnan
    Dhar, Debjyoti
    Parmar, Hasit
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [4] Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning
    A, Yinglan
    Jiang, Xiaoman
    Wang, Yuntao
    Wang, Libo
    Zhang, Zihao
    Duan, Limin
    Fang, Qingqing
    JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 258
  • [5] STAMP: An Approach to ETA Prediction by Spatio-temporal Discretization and Machine Learning
    Xu, Bo
    Jonietz, David
    Gupta, Rohit
    Soleymani, Ali
    Malm, Kevin
    Kohn, Reinhard
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 893 - 900
  • [6] Ultrasound Shear Wave Elasticity Imaging With Spatio-Temporal Deep Learning
    Neidhardt, Maximilian
    Bengs, Marcel
    Latus, Sarah
    Gerlach, Stefan
    Cyron, Christian J.
    Sprenger, Johanna
    Schlaefer, Alexander
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (11) : 3356 - 3364
  • [7] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    ENERGIES, 2018, 11 (04)
  • [8] Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models
    Varghese, Ken Koshy
    Mahdaviabbasabad, Sajjad
    Gentile, Guido
    Eldafrawi, Mohamed
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2023, 24 (01) : 22 - 32
  • [9] Cross-City Transfer Learning for Deep Spatio-Temporal Prediction
    Wang, Leye
    Geng, Xu
    Ma, Xiaojuan
    Liu, Feng
    Yang, Qiang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1893 - 1899
  • [10] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478