The Edge Odd Graceful Labeling of Water Wheel Graphs

被引:0
|
作者
Aljohani, Mohammed [1 ]
Daoud, Salama Nagy [1 ,2 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Al Madinah 41411, Saudi Arabia
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm 32511, Egypt
关键词
graceful labeling; edge graceful labeling; edge odd graceful labeling; water wheel graph;
D O I
10.3390/axioms14010005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph, G=(V,E), is edge odd graceful if it possesses edge odd graceful labeling. This labeling is defined as a bijection g:E(G)->{1,3,& mldr;,2m-1}, from which an injective transformation is derived, g*:V(G)->{1,2,3,& mldr;,2m-1}, from the rule that the image of u is an element of V(G) under g* is & sum;uv is an element of E(G)g(uv)mod(2m). The main objective of this manuscript is to introduce new classes of planar graphs, namely water wheel graphs, WWn; triangulated water wheel graphs, TWn; closed water wheel graphs, CWn; and closed triangulated water wheel graphs, CTn. Furthermore, we specify conditions for these graphs to allow for edge odd graceful labelings.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Conjecture on odd graceful graphs
    Neela, N.
    Selvaraj, C.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2016, 97 : 65 - 82
  • [22] Edge Even Graceful Labeling of Some Path and Cycle Related Graphs
    Elsonbaty, A.
    Daoud, S. N.
    ARS COMBINATORIA, 2017, 130 : 79 - 96
  • [23] Further results on edge even graceful labeling of the join of two graphs
    Mohamed R. Zeen El Deen
    Nora A. Omar
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [24] ON EDGE-GRACEFUL AND SUPER-EDGE-GRACEFUL GRAPHS
    MITCHEM, J
    SIMOSON, A
    ARS COMBINATORIA, 1994, 37 : 97 - 111
  • [25] On odd-graceful coloring of graphs
    Suparta, I. Nengah
    Lin, Yuqing
    Hasni, Roslan
    Budayana, I. Nyoman
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [26] On Farey Edge Graceful Labeling
    Kumar, Ajay
    Gupta, Neeraj
    Kumar, Ajendra
    Tyagi, Suraj
    Kumar, Vipin
    IAENG International Journal of Applied Mathematics, 2024, 54 (11) : 2484 - 2490
  • [27] On k-graceful labeling of pendant edge extension of complete bipartite graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 188 - 199
  • [28] ODD GRACEFUL LABELING OF PATH UNION OF CATERPILLARS
    Jesintha, J. Jeba
    Glory, R. Jaya
    Solai, A. Elakiya
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2021, 28 (02): : 287 - 294
  • [29] Odd sum labeling of graphs obtained by duplicating any edge of some graphs
    Arockiaraj, S.
    Mahalakshmi, P.
    Namasivayam, P.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2015, 3 (02) : 197 - 215
  • [30] A new graceful labeling for pendant graphs
    Graf, Alessandra
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 135 - 145