The Edge Odd Graceful Labeling of Water Wheel Graphs

被引:0
|
作者
Aljohani, Mohammed [1 ]
Daoud, Salama Nagy [1 ,2 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Al Madinah 41411, Saudi Arabia
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm 32511, Egypt
关键词
graceful labeling; edge graceful labeling; edge odd graceful labeling; water wheel graph;
D O I
10.3390/axioms14010005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph, G=(V,E), is edge odd graceful if it possesses edge odd graceful labeling. This labeling is defined as a bijection g:E(G)->{1,3,& mldr;,2m-1}, from which an injective transformation is derived, g*:V(G)->{1,2,3,& mldr;,2m-1}, from the rule that the image of u is an element of V(G) under g* is & sum;uv is an element of E(G)g(uv)mod(2m). The main objective of this manuscript is to introduce new classes of planar graphs, namely water wheel graphs, WWn; triangulated water wheel graphs, TWn; closed water wheel graphs, CWn; and closed triangulated water wheel graphs, CTn. Furthermore, we specify conditions for these graphs to allow for edge odd graceful labelings.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Graceful Labeling of Generalized Theta graphs
    Sathiamoorthy, G.
    Janakiraman, T. N.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (02): : 121 - 122
  • [32] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2011, 99 : 225 - 242
  • [33] Graceful Labeling for Some Supercaterpillar Graphs
    Pakpahan, R. N.
    Mursidah, I.
    Novitasari, I. D.
    Sugeng, K. A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [34] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2013, 108 : 515 - 532
  • [35] Graceful Labeling of Generalized Theta graphs
    G. Sathiamoorthy
    T. N. Janakiraman
    National Academy Science Letters, 2018, 41 : 121 - 122
  • [36] A new graceful labeling for pendant graphs
    Alessandra Graf
    Aequationes mathematicae, 2014, 87 : 135 - 145
  • [37] Crown graphs and subdivision of ladders are odd graceful
    Badr, E. M.
    Moussa, M. I.
    Kathiresan, K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (17) : 3570 - 3576
  • [38] On Modular Edge-Graceful Graphs
    Fujie-Okamoto, Futaba
    Jones, Ryan
    Kolasinski, Kyle
    Zhang, Ping
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 901 - 912
  • [39] Super edge magic graceful graphs
    Marimuthu, G.
    Balakrishnan, M.
    INFORMATION SCIENCES, 2014, 287 : 140 - 151
  • [40] Further results on super graceful labeling of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Ng, Ho-Kuen
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 200 - 209