The Edge Odd Graceful Labeling of Water Wheel Graphs

被引:0
|
作者
Aljohani, Mohammed [1 ]
Daoud, Salama Nagy [1 ,2 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Al Madinah 41411, Saudi Arabia
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm 32511, Egypt
关键词
graceful labeling; edge graceful labeling; edge odd graceful labeling; water wheel graph;
D O I
10.3390/axioms14010005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph, G=(V,E), is edge odd graceful if it possesses edge odd graceful labeling. This labeling is defined as a bijection g:E(G)->{1,3,& mldr;,2m-1}, from which an injective transformation is derived, g*:V(G)->{1,2,3,& mldr;,2m-1}, from the rule that the image of u is an element of V(G) under g* is & sum;uv is an element of E(G)g(uv)mod(2m). The main objective of this manuscript is to introduce new classes of planar graphs, namely water wheel graphs, WWn; triangulated water wheel graphs, TWn; closed water wheel graphs, CWn; and closed triangulated water wheel graphs, CTn. Furthermore, we specify conditions for these graphs to allow for edge odd graceful labelings.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Some Simple Algorithms for Some Odd Graceful Labeling Graphs
    Moussa, M. Ibrahim
    AIC '09: PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED INFORMATICS AND COMMUNICATIONS: RECENT ADVANCES IN APPLIED INFORMAT AND COMMUNICATIONS, 2009, : 399 - +
  • [12] On edge-graceful labeling and deficiency for regular graphs
    Wang, Tao-Ming
    Zhang, Guang-Hui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 105 - 111
  • [13] On odd graceful graphs
    Seoud, M. A.
    Abdel-Aal, M. E.
    ARS COMBINATORIA, 2013, 108 : 161 - 185
  • [14] Edge Even Graceful Labeling of Polar Grid Graphs
    Daoud, Salama Nagy
    SYMMETRY-BASEL, 2019, 11 (01):
  • [15] Odd-even graceful labeling of planar grid and prism graphs
    Basher, M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (04): : 747 - 751
  • [16] Vertex Odd Graceful Labeling
    Daoud, S. N.
    ARS COMBINATORIA, 2019, 142 : 65 - 87
  • [17] Some α-graphs and odd graceful graphs
    Seoud, M. A.
    Helmi, E. F.
    ARS COMBINATORIA, 2011, 101 : 385 - 404
  • [18] VERTEX AND EDGE-VERTEX GRACEFUL LABELING ON NEUTROSOPHIC GRAPHS
    Vetrivel, G.
    Mullai, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 387 - 399
  • [19] Edge δ- Graceful Labeling for Some Cyclic-Related Graphs
    Zeen El Deen, Mohamed R.
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [20] ODD GRACEFUL LABELINGS OF GRAPHS
    Gao, Zhen-Bin
    Zhang, Xiao-Dong
    Xu, Li-Juan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (03) : 377 - 388