The Edge Odd Graceful Labeling of Water Wheel Graphs

被引:0
|
作者
Aljohani, Mohammed [1 ]
Daoud, Salama Nagy [1 ,2 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Al Madinah 41411, Saudi Arabia
[2] Menoufia Univ, Fac Sci, Dept Math & Comp Sci, Shibin Al Kawm 32511, Egypt
关键词
graceful labeling; edge graceful labeling; edge odd graceful labeling; water wheel graph;
D O I
10.3390/axioms14010005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph, G=(V,E), is edge odd graceful if it possesses edge odd graceful labeling. This labeling is defined as a bijection g:E(G)->{1,3,& mldr;,2m-1}, from which an injective transformation is derived, g*:V(G)->{1,2,3,& mldr;,2m-1}, from the rule that the image of u is an element of V(G) under g* is & sum;uv is an element of E(G)g(uv)mod(2m). The main objective of this manuscript is to introduce new classes of planar graphs, namely water wheel graphs, WWn; triangulated water wheel graphs, TWn; closed water wheel graphs, CWn; and closed triangulated water wheel graphs, CTn. Furthermore, we specify conditions for these graphs to allow for edge odd graceful labelings.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Edge Odd Graceful Labeling in Some Wheel-Related Graphs
    Aljohani, Mohammed
    Daoud, Salama Nagy
    MATHEMATICS, 2024, 12 (08)
  • [2] Edge Odd Graceful Labeling of Cylinder and Torus Grid Graphs
    Daoud, S. N.
    IEEE ACCESS, 2019, 7 : 10568 - 10592
  • [3] Further results on edge - odd graceful graphs
    Seoud, Mohammed
    Salim, Maher
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 647 - 656
  • [4] On Some New Edge Odd Graceful Graphs
    Susanti, Yeni
    Ernanto, Iwan
    Surodjo, Budi
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [5] On odd-graceful labeling of disjoint union of graphs
    Riasat, Ayesha
    Kanwal, Salma
    Javed, Sana
    UTILITAS MATHEMATICA, 2016, 101 : 189 - 214
  • [6] ODD GRACEFUL LABELING OF ARBITRARY SUPERSUBDIVISION OF CERTAIN GRAPHS
    Velankanni, A.
    Raj, A. Bernick
    Sujasree, M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 34 : 23 - 37
  • [7] ODD GRACEFUL LABELING OF SSG WITH STAR RELATED GRAPHS
    Jesintha, J. Jeba
    Devakirubanithi, D.
    Aarthy, B.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 519 - 529
  • [8] New classes of graphs with edge δ- graceful labeling
    El Deen, Mohamed R. Zeen
    Elmahdy, Ghada
    AIMS MATHEMATICS, 2022, 7 (03): : 3554 - 3589
  • [9] Edge even graceful labeling of some graphs
    Mohamed R. Zeen El Deen
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [10] Extending of Edge Even Graceful Labeling of Graphs to Strong r-Edge Even Graceful Labeling
    El Deen, Mohamed R. Zeen
    Omar, Nora A.
    JOURNAL OF MATHEMATICS, 2021, 2021