Further results on edge even graceful labeling of the join of two graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
Nora A. Omar
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Suez University,undefined
[4] Department of Mathematics,undefined
[5] Faculty of Science,undefined
[6] Port-Said University,undefined
关键词
Complete bipartite graph; Wheel graph; Sunflower graph; Edge even graceful labeling; Join of two graphs; 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-020-00077-5
中图分类号
学科分类号
摘要
In this paper, we investigated the edge even graceful labeling property of the join of two graphs. A function f is called an edge even graceful labeling of a graph G=(V(G),E(G)) with p=|V(G)| vertices and q=|E(G)| edges if f:E(G)→{2,4,...,2q} is bijective and the induced function f∗:V(G) →{0,2,4,⋯,2q−2 }, defined as f∗(x)=(∑xy∈E(G)f(xy))mod(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f^{\ast }(x) = ({\sum \nolimits }_{xy \in E(G)} f(xy)~)~\mbox{{mod}}~(2k) $\end{document}, where k=max(p,q), is an injective function. Sufficient conditions for the complete bipartite graph Km,n =mK1+nK1 to have an edge even graceful labeling are established. Also, we introduced an edge even graceful labeling of the join of the graph K1 with the star graph K1,n, the wheel graph Wn and the sunflower graph sfn for all n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb {N}$\end{document}. Finally, we proved that the join of the graph K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {K}_{2}~$\end{document} with the star graph K1,n, the wheel graph Wn and the cyclic graph Cn are edge even graceful graphs.
引用
收藏
相关论文
共 50 条
  • [1] Extending of Edge Even Graceful Labeling of Graphs to Strong r-Edge Even Graceful Labeling
    El Deen, Mohamed R. Zeen
    Omar, Nora A.
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [2] Edge even graceful labeling of some graphs
    Mohamed R. Zeen El Deen
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [3] Edge Even Graceful Labeling of Polar Grid Graphs
    Daoud, Salama Nagy
    SYMMETRY-BASEL, 2019, 11 (01):
  • [4] Further results on super graceful labeling of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Ng, Ho-Kuen
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (02) : 200 - 209
  • [5] Further results on edge - odd graceful graphs
    Seoud, Mohammed
    Salim, Maher
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 647 - 656
  • [6] Edge Even Graceful Labeling of Some Path and Cycle Related Graphs
    Elsonbaty, A.
    Daoud, S. N.
    ARS COMBINATORIA, 2017, 130 : 79 - 96
  • [7] New classes of graphs with edge δ- graceful labeling
    El Deen, Mohamed R. Zeen
    Elmahdy, Ghada
    AIMS MATHEMATICS, 2022, 7 (03): : 3554 - 3589
  • [8] Edge Even Graceful Labeling of Cylinder Grid Graph
    Elsonbaty, Ahmed A.
    Daoud, Salama Nagy
    SYMMETRY-BASEL, 2019, 11 (04):
  • [9] Edge even graceful labelling of some book graphs
    Daoud, S. N.
    Elsawy, Ahmed N.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2018, 12 (03): : 315 - 330
  • [10] Edge even graceful labelling of new families of graphs
    Daoud, S. N.
    Elsawy, Ahmed N.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 579 - 591