Further results on edge even graceful labeling of the join of two graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
Nora A. Omar
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Suez University,undefined
[4] Department of Mathematics,undefined
[5] Faculty of Science,undefined
[6] Port-Said University,undefined
关键词
Complete bipartite graph; Wheel graph; Sunflower graph; Edge even graceful labeling; Join of two graphs; 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-020-00077-5
中图分类号
学科分类号
摘要
In this paper, we investigated the edge even graceful labeling property of the join of two graphs. A function f is called an edge even graceful labeling of a graph G=(V(G),E(G)) with p=|V(G)| vertices and q=|E(G)| edges if f:E(G)→{2,4,...,2q} is bijective and the induced function f∗:V(G) →{0,2,4,⋯,2q−2 }, defined as f∗(x)=(∑xy∈E(G)f(xy))mod(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f^{\ast }(x) = ({\sum \nolimits }_{xy \in E(G)} f(xy)~)~\mbox{{mod}}~(2k) $\end{document}, where k=max(p,q), is an injective function. Sufficient conditions for the complete bipartite graph Km,n =mK1+nK1 to have an edge even graceful labeling are established. Also, we introduced an edge even graceful labeling of the join of the graph K1 with the star graph K1,n, the wheel graph Wn and the sunflower graph sfn for all n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb {N}$\end{document}. Finally, we proved that the join of the graph K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {K}_{2}~$\end{document} with the star graph K1,n, the wheel graph Wn and the cyclic graph Cn are edge even graceful graphs.
引用
收藏
相关论文
共 50 条
  • [21] Central vertex join and central edge join of two graphs
    Jahfar, T. K.
    Chithra, A., V
    AIMS MATHEMATICS, 2020, 5 (06): : 7214 - 7233
  • [22] On k-graceful labeling of pendant edge extension of complete bipartite graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 188 - 199
  • [23] A new graceful labeling for pendant graphs
    Graf, Alessandra
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 135 - 145
  • [24] Graceful Labeling of Generalized Theta graphs
    Sathiamoorthy, G.
    Janakiraman, T. N.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (02): : 121 - 122
  • [25] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2011, 99 : 225 - 242
  • [26] Graceful Labeling for Some Supercaterpillar Graphs
    Pakpahan, R. N.
    Mursidah, I.
    Novitasari, I. D.
    Sugeng, K. A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [27] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2013, 108 : 515 - 532
  • [28] Graceful Labeling of Generalized Theta graphs
    G. Sathiamoorthy
    T. N. Janakiraman
    National Academy Science Letters, 2018, 41 : 121 - 122
  • [29] A new graceful labeling for pendant graphs
    Alessandra Graf
    Aequationes mathematicae, 2014, 87 : 135 - 145
  • [30] Computing the edge irregularity strengths of chain graphs and the join of two graphs
    Ahmad, Ali
    Gupta, Ashok
    Simanjuntak, Rinovia
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (01) : 201 - 207