Further results on edge even graceful labeling of the join of two graphs

被引:0
|
作者
Mohamed R. Zeen El Deen
Nora A. Omar
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Suez University,undefined
[4] Department of Mathematics,undefined
[5] Faculty of Science,undefined
[6] Port-Said University,undefined
关键词
Complete bipartite graph; Wheel graph; Sunflower graph; Edge even graceful labeling; Join of two graphs; 05 C 78; 05 C 76; 05 C 90; 05 C 99;
D O I
10.1186/s42787-020-00077-5
中图分类号
学科分类号
摘要
In this paper, we investigated the edge even graceful labeling property of the join of two graphs. A function f is called an edge even graceful labeling of a graph G=(V(G),E(G)) with p=|V(G)| vertices and q=|E(G)| edges if f:E(G)→{2,4,...,2q} is bijective and the induced function f∗:V(G) →{0,2,4,⋯,2q−2 }, defined as f∗(x)=(∑xy∈E(G)f(xy))mod(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ f^{\ast }(x) = ({\sum \nolimits }_{xy \in E(G)} f(xy)~)~\mbox{{mod}}~(2k) $\end{document}, where k=max(p,q), is an injective function. Sufficient conditions for the complete bipartite graph Km,n =mK1+nK1 to have an edge even graceful labeling are established. Also, we introduced an edge even graceful labeling of the join of the graph K1 with the star graph K1,n, the wheel graph Wn and the sunflower graph sfn for all n∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \in \mathbb {N}$\end{document}. Finally, we proved that the join of the graph K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {K}_{2}~$\end{document} with the star graph K1,n, the wheel graph Wn and the cyclic graph Cn are edge even graceful graphs.
引用
收藏
相关论文
共 50 条
  • [41] M MODULO N GRACEFUL LABELING OF PATH UNION AND JOIN SUM OF COMPLETE BIPARTITE GRAPHS WITH ITS ALGORITHMS
    Velmurugan, C.
    Ramachandran, V.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (04): : 1166 - 1178
  • [42] Two classes of graceful graphs
    Kathiresan, KM
    ARS COMBINATORIA, 2000, 55 : 129 - 132
  • [43] The distance spectrum of the subdivision vertex join and subdivision edge join of two regular graphs
    Indulal, Gopalapilla
    Scaria, Deena C.
    Liu, Xiaogang
    DISCRETE MATHEMATICS LETTERS, 2019, 1 : 36 - 41
  • [44] Spectra of Subdivision-Vertex Join and Subdivision-Edge Join of Two Graphs
    Liu, Xiaogang
    Zhang, Zuhe
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 15 - 31
  • [45] On the distance spectra of central vertex join and central edge join of two regular graphs
    Haritha, T.
    Chithra, A., V
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1663 - 1681
  • [46] Spectra of Subdivision-Vertex Join and Subdivision-Edge Join of Two Graphs
    Xiaogang Liu
    Zuhe Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 15 - 31
  • [47] ON EDGE-GRACEFUL REGULAR GRAPHS AND TREES
    CABANISS, S
    LOW, R
    MITCHEM, J
    ARS COMBINATORIA, 1992, 34 : 129 - 142
  • [48] SOME RESULTS ON GRACEFUL CENTERS OF Pn AND RELATED α-GRACEFUL GRAPHS
    Makadia, H. M.
    Kaneria, V. J.
    Andharia, P.
    Jadeja, D.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (03): : 908 - 918
  • [49] On odd-graceful labeling of disjoint union of graphs
    Riasat, Ayesha
    Kanwal, Salma
    Javed, Sana
    UTILITAS MATHEMATICA, 2016, 101 : 189 - 214
  • [50] On Some New Edge Odd Graceful Graphs
    Susanti, Yeni
    Ernanto, Iwan
    Surodjo, Budi
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192