Efficient and practical Hamiltonian simulation from time-dependent product formulas

被引:0
|
作者
Bosse, Jan Lukas [1 ,2 ]
Childs, Andrew M. [1 ,3 ]
Derby, Charles [1 ]
Gambetta, Filippo Maria [1 ]
Montanaro, Ashley [1 ,2 ]
Santos, Raul A. [1 ]
机构
[1] Phasecraft Ltd, 77 Charlotte St, London W1T 4PW, England
[2] Univ Bristol, Sch Math, Bristol, England
[3] Univ Maryland, Inst Adv Comp Studies, Joint Ctr Quantum Informat & Comp Sci, Dept Comp Sci, College Pk, MD USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
QUANTUM; CRITICALITY; ALGORITHMS; MAGNUS;
D O I
10.1038/s41467-025-57580-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we propose an approach for implementing time-evolution of a quantum system using product formulas. The quantum algorithms we develop have provably better scaling (in terms of gate complexity and circuit depth) than a naive application of well-known Trotter formulas, for systems where the evolution is determined by a Hamiltonian with different energy scales (i.e., one part is "large" and another part is "small"). Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer. Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms (e.g., quantum signal processing), the performance of the algorithms we propose is highly competitive in practice. We illustrate this via extensive numerical simulations for several models. For instance, in the strong-field regime of the 1D transverse-field Ising model, our algorithms achieve an improvement of one order of magnitude in both the system size and evolution time that can be simulated with a fixed budget of 1000 arbitrary 2-qubit gates, compared with standard Trotter formulas.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Minimum Trotterization Formulas for a Time-Dependent Hamiltonian
    Ikeda, Tatsuhiko N.
    Abrar, Asir
    Chuang, Isaac L.
    Sugiura, Sho
    QUANTUM, 2023, 7
  • [2] Time-dependent unbounded Hamiltonian simulation with vector norm scaling
    An, Dong
    Fang, Di
    Lin, Lin
    QUANTUM, 2021, 5
  • [3] Quantum Algorithm for Time-Dependent Hamiltonian Simulation by Permutation Expansion
    Chen, Yi-Hsiang
    Kalev, Amir
    Hen, Itay
    PRX QUANTUM, 2021, 2 (03):
  • [4] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [5] TIME-DEPENDENT DRIFT HAMILTONIAN
    BOOZER, AH
    PHYSICS OF FLUIDS, 1984, 27 (10) : 2441 - 2445
  • [6] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [7] Computing the effective Hamiltonian for a time-dependent Hamiltonian
    Nolte, Martin
    Kroener, Dietmar
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 815 - 824
  • [8] Randomizing multi-product formulas for Hamiltonian simulation
    Faehrmann, Paul K.
    Steudtner, Mark
    Kueng, Richard
    Kieferova, Maria
    Eisert, Jens
    QUANTUM, 2022, 6
  • [9] Time-dependent Hamiltonian simulation with L1-norm scaling
    Berry, Dominic W.
    Childs, Andrew M.
    Su, Yuan
    Wang, Xin
    Wiebe, Nathan
    QUANTUM, 2020, 4
  • [10] Time-Dependent Hamiltonian Simulation Using Discrete-Clock Constructions
    Watkins, Jacob
    Wiebe, Nathan
    Roggero, Alessandro
    Lee, Dean
    PRX QUANTUM, 2024, 5 (04):