Efficient and practical Hamiltonian simulation from time-dependent product formulas

被引:0
|
作者
Bosse, Jan Lukas [1 ,2 ]
Childs, Andrew M. [1 ,3 ]
Derby, Charles [1 ]
Gambetta, Filippo Maria [1 ]
Montanaro, Ashley [1 ,2 ]
Santos, Raul A. [1 ]
机构
[1] Phasecraft Ltd, 77 Charlotte St, London W1T 4PW, England
[2] Univ Bristol, Sch Math, Bristol, England
[3] Univ Maryland, Inst Adv Comp Studies, Joint Ctr Quantum Informat & Comp Sci, Dept Comp Sci, College Pk, MD USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
QUANTUM; CRITICALITY; ALGORITHMS; MAGNUS;
D O I
10.1038/s41467-025-57580-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we propose an approach for implementing time-evolution of a quantum system using product formulas. The quantum algorithms we develop have provably better scaling (in terms of gate complexity and circuit depth) than a naive application of well-known Trotter formulas, for systems where the evolution is determined by a Hamiltonian with different energy scales (i.e., one part is "large" and another part is "small"). Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer. Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms (e.g., quantum signal processing), the performance of the algorithms we propose is highly competitive in practice. We illustrate this via extensive numerical simulations for several models. For instance, in the strong-field regime of the 1D transverse-field Ising model, our algorithms achieve an improvement of one order of magnitude in both the system size and evolution time that can be simulated with a fixed budget of 1000 arbitrary 2-qubit gates, compared with standard Trotter formulas.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Estimation of a general time-dependent Hamiltonian for a single qubit
    L. E. de Clercq
    R. Oswald
    C. Flühmann
    B. Keitch
    D. Kienzler
    H. -Y. Lo
    M. Marinelli
    D. Nadlinger
    V. Negnevitsky
    J. P. Home
    Nature Communications, 7
  • [42] NOETHER SYMMETRIES AND INTEGRABILITY IN TIME-DEPENDENT HAMILTONIAN MECHANICS
    Jovanovic, Bozidar
    THEORETICAL AND APPLIED MECHANICS, 2016, 43 (02) : 255 - 273
  • [43] Time-dependent normal form Hamiltonian for dynamical equilibria
    Thylwe, KE
    Dankowicz, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13): : 3707 - 3722
  • [44] Propagator of a time-dependent unbound quadratic Hamiltonian system
    Yeon, KH
    Kim, HJ
    Um, CI
    George, TF
    Pandey, LN
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (08): : 963 - 971
  • [45] LOCALIZATION AND DEPHASING EFFECTS IN A TIME-DEPENDENT ANDERSON HAMILTONIAN
    EVENSKY, DA
    SCALETTAR, RT
    WOLYNES, PG
    JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (03): : 1149 - 1154
  • [46] On time-dependent hamiltonian realizations of planar and nonplanar systems
    Esen, Ogul
    Guha, Partha
    arXiv, 2017,
  • [47] Estimation of a general time-dependent Hamiltonian for a single qubit
    de Clercq, L. E.
    Oswald, R.
    Fluehmann, C.
    Keitch, B.
    Kienzler, D.
    Lo, H. -Y.
    Marinelli, M.
    Nadlinger, D.
    Negnevitsky, V.
    Home, J. P.
    NATURE COMMUNICATIONS, 2016, 7
  • [48] On time-dependent Hamiltonian realizations of planar and nonplanar systems
    Esen, Ogul
    Guha, Partha
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 127 : 32 - 45
  • [50] QUANTUM TOMOGRAPHY OF TIME-DEPENDENT NONLINEAR HAMILTONIAN SYSTEMS
    Man'ko, V., I
    Markovich, L. A.
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (01) : 87 - 106