Efficient and practical Hamiltonian simulation from time-dependent product formulas

被引:0
|
作者
Bosse, Jan Lukas [1 ,2 ]
Childs, Andrew M. [1 ,3 ]
Derby, Charles [1 ]
Gambetta, Filippo Maria [1 ]
Montanaro, Ashley [1 ,2 ]
Santos, Raul A. [1 ]
机构
[1] Phasecraft Ltd, 77 Charlotte St, London W1T 4PW, England
[2] Univ Bristol, Sch Math, Bristol, England
[3] Univ Maryland, Inst Adv Comp Studies, Joint Ctr Quantum Informat & Comp Sci, Dept Comp Sci, College Pk, MD USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
QUANTUM; CRITICALITY; ALGORITHMS; MAGNUS;
D O I
10.1038/s41467-025-57580-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we propose an approach for implementing time-evolution of a quantum system using product formulas. The quantum algorithms we develop have provably better scaling (in terms of gate complexity and circuit depth) than a naive application of well-known Trotter formulas, for systems where the evolution is determined by a Hamiltonian with different energy scales (i.e., one part is "large" and another part is "small"). Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer. Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms (e.g., quantum signal processing), the performance of the algorithms we propose is highly competitive in practice. We illustrate this via extensive numerical simulations for several models. For instance, in the strong-field regime of the 1D transverse-field Ising model, our algorithms achieve an improvement of one order of magnitude in both the system size and evolution time that can be simulated with a fixed budget of 1000 arbitrary 2-qubit gates, compared with standard Trotter formulas.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] TRAPPING OF PARTICLES IN A TIME-DEPENDENT HAMILTONIAN
    BARBANIS, B
    CELESTIAL MECHANICS, 1976, 14 (02): : 201 - 208
  • [12] Bohr Hamiltonian with time-dependent potential
    Naderi, L.
    Hassanabadi, H.
    Sobhani, H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2016, 25 (04):
  • [13] TIME-DEPENDENT SUPERINTEGRABLE HAMILTONIAN SYSTEMS
    Sardanashvily, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)
  • [14] Constraints in Hamiltonian time-dependent mechanics
    Mangiarotti, L
    Sardanashvily, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2858 - 2876
  • [15] Invariants for time-dependent Hamiltonian systems
    Struckmeier, J
    Riedel, C
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [16] Entanglement entropy with a time-dependent Hamiltonian
    Sivaramakrishnan, Allic
    PHYSICAL REVIEW D, 2018, 97 (06)
  • [17] Invariants for time-dependent Hamiltonian systems
    Struckmeier, J.
    Riedel, C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 265031 - 265039
  • [18] Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrodinger Equation
    An, Dong
    Fang, Di
    Lin, Lin
    QUANTUM, 2022, 6
  • [19] Quantum representation of a time-dependent quadratic Hamiltonian in a time-dependent phase space frame
    Leyvraz, F
    Manko, VI
    Seligman, TH
    PHYSICS LETTERS A, 1996, 210 (1-2) : 26 - 32
  • [20] On the algebraic approach to the time-dependent quadratic Hamiltonian
    Urdaneta, Ines
    Sandoval, Lourdes
    Palma, Alejandro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)