Efficient and practical Hamiltonian simulation from time-dependent product formulas

被引:0
|
作者
Bosse, Jan Lukas [1 ,2 ]
Childs, Andrew M. [1 ,3 ]
Derby, Charles [1 ]
Gambetta, Filippo Maria [1 ]
Montanaro, Ashley [1 ,2 ]
Santos, Raul A. [1 ]
机构
[1] Phasecraft Ltd, 77 Charlotte St, London W1T 4PW, England
[2] Univ Bristol, Sch Math, Bristol, England
[3] Univ Maryland, Inst Adv Comp Studies, Joint Ctr Quantum Informat & Comp Sci, Dept Comp Sci, College Pk, MD USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
QUANTUM; CRITICALITY; ALGORITHMS; MAGNUS;
D O I
10.1038/s41467-025-57580-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we propose an approach for implementing time-evolution of a quantum system using product formulas. The quantum algorithms we develop have provably better scaling (in terms of gate complexity and circuit depth) than a naive application of well-known Trotter formulas, for systems where the evolution is determined by a Hamiltonian with different energy scales (i.e., one part is "large" and another part is "small"). Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer. Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms (e.g., quantum signal processing), the performance of the algorithms we propose is highly competitive in practice. We illustrate this via extensive numerical simulations for several models. For instance, in the strong-field regime of the 1D transverse-field Ising model, our algorithms achieve an improvement of one order of magnitude in both the system size and evolution time that can be simulated with a fixed budget of 1000 arbitrary 2-qubit gates, compared with standard Trotter formulas.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Time-dependent formulation of the linear unitary transformation and the time evolution of general time-dependent quadratic Hamiltonian systems
    Liu, WS
    ANNALS OF PHYSICS, 2004, 312 (02) : 480 - 491
  • [32] CONVERGENCE OF SEPARATION (GALERKIN) FORMULAS IN TIME-DEPENDENT EQUATIONS
    GAJEWSKI, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (10): : T372 - T374
  • [33] SIMULATION OF INVENTORY POLICY FOR PRODUCT WITH PRICE AND TIME-DEPENDENT DEMAND FOR DETERIORATING ITEM
    Shukla, D.
    Khedlekar, U. K.
    Chandel, R. P. S.
    Bhagwat, S.
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2012, 3 (01)
  • [34] GEOMETRY OF THE DYNAMICAL-SYSTEMS WITH TIME-DEPENDENT CONSTRAINTS AND TIME-DEPENDENT HAMILTONIAN - AN APPROACH TOWARDS QUANTIZATION
    HAMOUI, A
    LICHNEROWICZ, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) : 923 - 931
  • [35] Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation
    Zhuk, Sergiy
    Robertson, Niall F.
    Bravyi, Sergey
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [36] Time-Dependent Hamiltonian Reconstruction Using Continuous Weak
    Siva, Karthik
    Koolstra, Gerwin
    Steinmetz, John
    Livingston, William P.
    Das, Debmalya
    Chen, L.
    Kreikebaum, J. M.
    Stevenson, N. J.
    Junger, C.
    Santiago, D. I.
    Siddiqi, I.
    Jordan, A. N.
    PRX QUANTUM, 2023, 4 (04):
  • [37] SOLUTION OF A SIMPLE LIOUVILLE EQUATION WITH A TIME-DEPENDENT HAMILTONIAN
    VICTORIA, J
    MURIEL, A
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (07) : 845 - &
  • [38] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127
  • [40] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, Kyu Hwang
    Um, Chung In
    George, Thomas F.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (05): : 521081 - 521089