Efficient and practical Hamiltonian simulation from time-dependent product formulas

被引:0
|
作者
Bosse, Jan Lukas [1 ,2 ]
Childs, Andrew M. [1 ,3 ]
Derby, Charles [1 ]
Gambetta, Filippo Maria [1 ]
Montanaro, Ashley [1 ,2 ]
Santos, Raul A. [1 ]
机构
[1] Phasecraft Ltd, 77 Charlotte St, London W1T 4PW, England
[2] Univ Bristol, Sch Math, Bristol, England
[3] Univ Maryland, Inst Adv Comp Studies, Joint Ctr Quantum Informat & Comp Sci, Dept Comp Sci, College Pk, MD USA
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; “创新英国”项目;
关键词
QUANTUM; CRITICALITY; ALGORITHMS; MAGNUS;
D O I
10.1038/s41467-025-57580-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work we propose an approach for implementing time-evolution of a quantum system using product formulas. The quantum algorithms we develop have provably better scaling (in terms of gate complexity and circuit depth) than a naive application of well-known Trotter formulas, for systems where the evolution is determined by a Hamiltonian with different energy scales (i.e., one part is "large" and another part is "small"). Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer. Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms (e.g., quantum signal processing), the performance of the algorithms we propose is highly competitive in practice. We illustrate this via extensive numerical simulations for several models. For instance, in the strong-field regime of the 1D transverse-field Ising model, our algorithms achieve an improvement of one order of magnitude in both the system size and evolution time that can be simulated with a fixed budget of 1000 arbitrary 2-qubit gates, compared with standard Trotter formulas.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Recent results on time-dependent Hamiltonian oscillators
    M. Robnik
    The European Physical Journal Special Topics, 2016, 225 : 1087 - 1101
  • [22] MULTIPOLE INTERACTION HAMILTONIAN FOR TIME-DEPENDENT FIELDS
    BARRON, LD
    GRAY, CG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (01): : 59 - 61
  • [23] Recent results on time-dependent Hamiltonian oscillators
    Robnik, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (6-7): : 1087 - 1101
  • [24] COMMENT ON MULTIPOLE HAMILTONIAN FOR TIME-DEPENDENT FIELDS
    WOOLLEY, RG
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1973, 6 (05) : L97 - L99
  • [25] Exact Invariants for a Time-Dependent Hamiltonian System
    Luo Xiao-Bing
    CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [26] CHAOTIC SCATTERING IN TIME-DEPENDENT HAMILTONIAN SYSTEMS
    Lai, Ying-Cheng
    Grebogi, Celso
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 667 - 679
  • [27] Numerical quantum propagation with time-dependent Hamiltonian
    Zhu, WS
    Zhao, XS
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (21): : 9536 - 9545
  • [28] Derivation of a generalized Langevin equation from a generic time-dependent Hamiltonian
    Hery, Benjamin J. A.
    Netz, Roland R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (50)
  • [29] Efficient product formulas for commutators and applications to quantum simulation
    Chen, Yu-An
    Childs, Andrew M.
    Hafezi, Mohammad
    Jiang, Zhang
    Kim, Hwanmun
    Xu, Yijia
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [30] Efficient simulation of time-dependent flows: Application to a twin screw extruder
    Raut, JS
    Naik, VM
    Jongen, TR
    AICHE JOURNAL, 2003, 49 (08) : 1933 - 1946