Time-Dependent Hamiltonian Simulation Using Discrete-Clock Constructions

被引:0
|
作者
Watkins, Jacob [1 ,2 ]
Wiebe, Nathan [3 ,4 ,5 ]
Roggero, Alessandro [6 ,7 ,8 ]
Lee, Dean [1 ,2 ]
机构
[1] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[4] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[6] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
[7] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[8] Univ Trento, TIFPA Trento Inst Fundamental Phys & Applicat, INFN, I-38123 Trento, Italy
来源
PRX QUANTUM | 2024年 / 5卷 / 04期
基金
美国国家科学基金会;
关键词
QUANTUM ALGORITHMS;
D O I
10.1103/PRXQuantum.5.040316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Compared with time-independent Hamiltonians, the dynamics of generic quantum Hamiltonians H(t) are complicated by the presence of time ordering in the evolution operator. In the context of digital quantum simulation, this difficulty prevents a direct adaptation of many time-independent simulation algorithms for time-dependent simulation. However, there exists a framework within the theory of dynamical systems that eliminates time ordering by adding a "clock" degree of freedom. In this work, we provide a computational framework, based on this reduction, for encoding time-dependent dynamics as time- independent systems. As a result, we make two advances in digital Hamiltonian simulation. First, we create a time-dependent simulation algorithm based on performing qubitization on the augmented clock system and, in doing so, provide the first qubitization-based approach to time-dependent Hamiltonians that goes beyond Trotterization of the ordered exponential. Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials and then propose and analyze an algorithm based on these formulas. Unlike other algorithms of similar accuracy, the multiproduct approach achieves commutator scaling, meaning that this method outperforms existing methods for physically local time-dependent Hamiltonians with sufficient smoothness. Our work reduces the disparity between time-dependent and time-independent simulation and indicates a step toward optimal quantum simulation of time-dependent Hamiltonians.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Time-dependent unbounded Hamiltonian simulation with vector norm scaling
    An, Dong
    Fang, Di
    Lin, Lin
    QUANTUM, 2021, 5
  • [2] Quantum Algorithm for Time-Dependent Hamiltonian Simulation by Permutation Expansion
    Chen, Yi-Hsiang
    Kalev, Amir
    Hen, Itay
    PRX QUANTUM, 2021, 2 (03):
  • [3] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):
  • [4] TIME-DEPENDENT DRIFT HAMILTONIAN
    BOOZER, AH
    PHYSICS OF FLUIDS, 1984, 27 (10) : 2441 - 2445
  • [5] Hamiltonian time-dependent mechanics
    Sardanashvily, GA
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) : 2714 - 2729
  • [6] Computing the effective Hamiltonian for a time-dependent Hamiltonian
    Nolte, Martin
    Kroener, Dietmar
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 815 - 824
  • [7] Time-Dependent Hamiltonian Reconstruction Using Continuous Weak
    Siva, Karthik
    Koolstra, Gerwin
    Steinmetz, John
    Livingston, William P.
    Das, Debmalya
    Chen, L.
    Kreikebaum, J. M.
    Stevenson, N. J.
    Junger, C.
    Santiago, D. I.
    Siddiqi, I.
    Jordan, A. N.
    PRX QUANTUM, 2023, 4 (04):
  • [8] Time-dependent Hamiltonian simulation with L1-norm scaling
    Berry, Dominic W.
    Childs, Andrew M.
    Su, Yuan
    Wang, Xin
    Wiebe, Nathan
    QUANTUM, 2020, 4
  • [9] Efficient and practical Hamiltonian simulation from time-dependent product formulas
    Bosse, Jan Lukas
    Childs, Andrew M.
    Derby, Charles
    Gambetta, Filippo Maria
    Montanaro, Ashley
    Santos, Raul A.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [10] Time-dependent cohesive zone modelling for discrete fracture simulation
    Geissler, Gordon
    Kaliske, Michael
    ENGINEERING FRACTURE MECHANICS, 2010, 77 (01) : 153 - 169