Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
|
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Observation of the Berezinskii-Kosterlitz-Thouless Phase Transition in an Ultracold Fermi Gas
    Murthy, P. A.
    Boettcher, I.
    Bayha, L.
    Holzmann, M.
    Kedar, D.
    Neidig, M.
    Ries, M. G.
    Wenz, A. N.
    Zuern, G.
    Jochim, S.
    PHYSICAL REVIEW LETTERS, 2015, 115 (01)
  • [42] Berezinskii-Kosterlitz-Thouless transition uncovered by the fidelity susceptibility in the XXZ model
    Wang, Bo
    Feng, Mang
    Chen, Ze-Qian
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [43] Longitudinal fluctuations in the Berezinskii-Kosterlitz-Thouless phase
    Jakubczyk, Pawel
    Metzner, Walter
    PHYSICAL REVIEW B, 2017, 95 (08)
  • [44] Berezinskii-Kosterlitz-Thouless transition transport in spin-triplet superconductor
    Chung, Suk Bum
    Kim, Se Kwon
    SCIPOST PHYSICS CORE, 2022, 5 (01):
  • [45] The relevancy of the chiral boson to the Berezinskii-Kosterlitz-Thouless transition as a boundary effect
    Inoue, Hitoshi
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [46] Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice
    Small, Eran
    Pugatch, Rami
    Silberberg, Yaron
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [47] More holographic Berezinskii-Kosterlitz-Thouless transitions
    Jensen, Kristan
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [48] Berezinskii-Kosterlitz-Thouless Transition in Two-Dimensional Dipole Systems
    Filinov, A.
    Prokof'ev, N. V.
    Bonitz, M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (07)
  • [49] Machine-learning detection of the Berezinskii-Kosterlitz-Thouless transition and the second-order phase transition in XXZ models
    Miyajima, Yusuke
    Mochizuki, Masahito
    PHYSICAL REVIEW B, 2023, 107 (13)
  • [50] Berezinskii-Kosterlitz-Thouless phase transition with Rabi-coupled bosons
    Furutani, Koichiro
    Perali, Andrea
    Salasnich, Luca
    PHYSICAL REVIEW A, 2023, 107 (04)