Berezinskii-Kosterlitz-Thouless Transition in Two-Dimensional Dipole Systems

被引:79
|
作者
Filinov, A. [1 ,2 ]
Prokof'ev, N. V. [3 ,4 ]
Bonitz, M. [1 ]
机构
[1] Univ Kiel, Inst Theoret Phys & Astrophys, D-24098 Kiel, Germany
[2] Russian Acad Sci, Inst Spect, Troitsk 142092, Russia
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia
关键词
INDIRECT EXCITONS; POTENTIAL TRAPS; QUANTUM-WELLS; SIMULATIONS; SUPERFLUIDS; DENSITY;
D O I
10.1103/PhysRevLett.105.070401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied in a broad density range by using path integral Monte Carlo simulations and summarized in the phase diagram. While at low densities we find good agreement with the universal results depending only on the scattering length as, at moderate and high densities the transition temperature is strongly affected by interactions and the excitation spectrum of quasiparticles. The results are expected to be of relevance to dipolar atomic and molecular systems and indirect excitons in quantum wells.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [2] The Berezinskii-Kosterlitz-Thouless Transition and Melting Scenarios of Two-Dimensional Systems
    Ryzhov, V. N.
    Gaiduk, E. A.
    Tareyeva, E. E.
    Fomin, Yu. D.
    Tsiok, E. N.
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 786 - 790
  • [3] Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes
    Bombin, Raul
    Mazzanti, Ferran
    Boronat, Jordi
    PHYSICAL REVIEW A, 2019, 100 (06)
  • [4] Comment on "Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes"
    Cinti, Fabio
    Boninsegni, Massimo
    PHYSICAL REVIEW A, 2020, 102 (04)
  • [5] Berezinskii-Kosterlitz-Thouless transition in two-dimensional lattice gas models
    Chamati, Hassan
    Romano, Silvano
    PHYSICAL REVIEW B, 2006, 73 (18)
  • [6] Berezinskii-Kosterlitz-Thouless phase in two-dimensional ferroelectrics
    Xu, Changsong
    Nahas, Yousra
    Prokhorenko, Sergei
    Xiang, Hongjun
    Bellaiche, L.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [7] Berezinskii-Kosterlitz-Thouless Transition of the Two-Dimensional XY Model on the Honeycomb Lattice
    Jiang, Fu-Jiun
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (10):
  • [8] Incipient Berezinskii-Kosterlitz-Thouless transition in two-dimensional coplanar Josephson junctions
    Massarotti, D.
    Jouault, B.
    Rouco, V.
    Charpentier, S.
    Bauch, T.
    Michon, A.
    De Candia, A.
    Lucignano, P.
    Lombardi, F.
    Tafuri, F.
    Tagliacozzo, A.
    PHYSICAL REVIEW B, 2016, 94 (05)
  • [9] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional systems with internal symmetries
    S. A. Bulgadaev
    Journal of Experimental and Theoretical Physics, 1999, 89 : 1107 - 1113
  • [10] Reply to "Comment on 'Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes'"
    Bombin, Raul
    Mazzanti, Ferran
    Boronat, Jordi
    PHYSICAL REVIEW A, 2020, 102 (04)