Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
|
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] On Berezinskii-Kosterlitz-Thouless transition in monoaxial chiral helimagnets
    Proskurin, Igor
    Ovchinnikov, Alexander S.
    Kishine, Jun-ichiro
    8TH JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS2016), 2017, 903
  • [12] New insight into the Berezinskii-Kosterlitz-Thouless phase transition
    Gerber, Urs
    Bietenholz, Wolfgang
    Rejon-Barrera, Fernando G.
    XIV MEXICAN WORKSHOP ON PARTICLES AND FIELDS, 2015, 651
  • [13] Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid
    Situ, Guohai
    Fleischer, Jason W.
    NATURE PHOTONICS, 2020, 14 (08) : 517 - +
  • [14] Berezinskii-Kosterlitz-Thouless transition close to the percolation threshold
    Costa, B. V.
    Coura, P. Z.
    Leonel, S. A.
    PHYSICS LETTERS A, 2013, 377 (18) : 1239 - 1241
  • [15] New Experimental Criterion of the Berezinskii-Kosterlitz-Thouless Transition
    Vasyutin, M. A.
    Golovashkin, A. I.
    Kuzmichev, N. D.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2008, 35 (09) : 286 - 289
  • [16] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, K.-H.
    Fazio, R.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1998, 68 (04):
  • [17] Transport signature of the magnetic Berezinskii-Kosterlitz-Thouless transition
    Kim, Se Kwon
    Chung, Suk Bum
    SCIPOST PHYSICS, 2021, 10 (03):
  • [18] New experimental criterion of the Berezinskii-Kosterlitz-Thouless transition
    M. A. Vasyutin
    A. I. Golovashkin
    N. D. Kuzmichev
    Bulletin of the Lebedev Physics Institute, 2008, 35 : 286 - 289
  • [19] Magnetoresistance driven by the magnetic Berezinskii-Kosterlitz-Thouless transition
    Flebus, B.
    PHYSICAL REVIEW B, 2021, 104 (02)
  • [20] Holographic Berezinskii-Kosterlitz-Thouless Transitions
    Jensen, Kristan
    Karch, Andreas
    Son, Dam T.
    Thompson, Ethan G.
    PHYSICAL REVIEW LETTERS, 2010, 105 (04)