Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
|
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
    Alexey Yu. Mironov
    Daniel M. Silevitch
    Thomas Proslier
    Svetlana V. Postolova
    Maria V. Burdastyh
    Anton K. Gutakovskii
    Thomas F. Rosenbaum
    Valerii V. Vinokur
    Tatyana I. Baturina
    Scientific Reports, 8
  • [22] Suppression effect on the Berezinskii-Kosterlitz-Thouless transition in growing networks
    Oh, S. M.
    Son, S-W
    Kahng, B.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [23] Machine learning analysis of dimensional reduction conjecture for nonequilibrium Berezinskii-Kosterlitz-Thouless transition in three dimensions
    Haga, Taiki
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [24] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagome antiferromagnet
    Cherepanov, VB
    Kolokolov, IV
    Podivilov, EV
    JETP LETTERS, 2001, 74 (12) : 596 - 599
  • [25] Berezinskii-Kosterlitz-Thouless transition - A universal neural network study with benchmarks
    Tseng, Y-H
    Jiang, F-J
    RESULTS IN PHYSICS, 2022, 33
  • [26] Berezinskii-Kosterlitz-Thouless transition from neural network flows
    Ng, Kwai-Kong
    Huang, Ching-Yu
    Lin, Feng-Li
    PHYSICAL REVIEW E, 2023, 108 (03)
  • [27] Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System
    Dagvadorj, G.
    Comaron, P.
    Szyma, M. H.
    PHYSICAL REVIEW LETTERS, 2023, 130 (13)
  • [28] Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films
    Koenig, E. J.
    Levchenko, A.
    Protopopov, I. V.
    Gornyi, I. V.
    Burmistrov, I. S.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2015, 92 (21)
  • [29] Berezinskii-Kosterlitz-Thouless transition and two-dimensional melting
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu D.
    Tsiok, E. N.
    PHYSICS-USPEKHI, 2017, 60 (09) : 857 - 885
  • [30] Simulating the Berezinskii-Kosterlitz-Thouless transition with the complex Langevin algorithm
    Heinen, Philipp
    Gasenzer, Thomas
    PHYSICAL REVIEW A, 2023, 108 (05)