Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
|
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Berezinskii-Kosterlitz-Thouless transition in disordered multichannel Luttinger liquids
    Jones, Max
    Lerner, Igor V.
    Yurkevich, Igor V.
    PHYSICAL REVIEW B, 2017, 96 (17)
  • [32] Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films
    Mironov, Alexey Yu.
    Silevitch, Daniel M.
    Proslier, Thomas
    Postolova, Svetlana V.
    Burdastyh, Maria V.
    Gutakovskii, Anton K.
    Rosenbaum, Thomas F.
    Vinokur, Valerii V.
    Baturina, Tatyana I.
    SCIENTIFIC REPORTS, 2018, 8
  • [33] The Berezinskii-Kosterlitz-Thouless transition and correlations in the XY kagomé antiferromagnet
    V. B. Cherepanov
    I. V. Kolokolov
    E. V. Podivilov
    Journal of Experimental and Theoretical Physics Letters, 2001, 74 : 596 - 599
  • [34] Berezinskii-Kosterlitz-Thouless phase transition in systems with exotic symmetries
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1996, 63 (09):
  • [35] Sharpness of the Berezinskii-Kosterlitz-Thouless Transition in Disordered NbN Films
    Weitzel, Alexander
    Pfaffinger, Lea
    Maccari, Ilaria
    Kronfeldner, Klaus
    Huber, Thomas
    Fuchs, Lorenz
    Mallord, James
    Linzen, Sven
    Il'Ichev, Evgeni
    Paradiso, Nicola
    Strunk, Christoph
    PHYSICAL REVIEW LETTERS, 2023, 131 (08)
  • [36] Berezinskii-Kosterlitz-Thouless transition of ultracold atoms in optical lattice
    Zaleski, T. A.
    Kopec, T. K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (08)
  • [37] Berezinskii-Kosterlitz-Thouless phase transition in systems with exotic symmetries
    Bulgadaev, SA
    JETP LETTERS, 1996, 63 (09) : 780 - 785
  • [38] Periodic quenches across the Berezinskii-Kosterlitz-Thouless phase transition
    Brown, K.
    Bland, T.
    Comaron, P.
    Proukakis, N. P.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [39] Fractonic Berezinskii-Kosterlitz-Thouless transition from a renormalization group perspective
    Grosvenor, Kevin T.
    Lier, Ruben
    Surowka, Piotr
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [40] Finite-size scaling method for the Berezinskii-Kosterlitz-Thouless transition
    Hsieh, Yun-Da
    Kao, Ying-Jer
    Sandvik, Anders W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,