A geometric approach to apriori estimates for optimal transport maps

被引:0
|
作者
Brendle, Simon [1 ]
Leger, Flavien [2 ]
McCann, Robert J. [3 ]
Rankin, Cale [4 ,5 ]
机构
[1] Columbia Univ, 2290 Broadway, New York, NY 10027 USA
[2] INRIA Paris, Paris, France
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[5] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
来源
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE PROBLEM; POTENTIAL FUNCTIONS; REGULARITY; EQUATIONS; PRODUCTS; DESIGN;
D O I
10.1515/crelle-2024-0071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma-Trudinger-Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior C 1 C<^>{1} estimate for smooth optimal maps. Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren's observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条
  • [1] Sobolev estimates for optimal transport maps on Gaussian spaces
    Fang, Shizan
    Nolot, Vincent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5045 - 5084
  • [2] Optimal Transport of Maps
    Jung, Woochul
    Morales, Carlos
    Wen, Xiao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (02)
  • [3] REGULARITY OF OPTIMAL TRANSPORT MAPS
    Figalli, Alessio
    ASTERISQUE, 2010, (332) : 341 - 368
  • [4] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Felix Otto
    Maxime Prod’homme
    Tobias Ried
    Annals of PDE, 2021, 7
  • [5] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Otto, Felix
    Prod'homme, Maxime
    Ried, Tobias
    ANNALS OF PDE, 2021, 7 (02)
  • [6] Globally optimal estimates for geometric reconstruction problems
    Kahl, Fredrik
    Henrion, Didier
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 74 (01) : 3 - 15
  • [7] On Pogorelov estimates in optimal transportation and geometric optics
    Jiang, Feida
    Trudinger, Neil S.
    BULLETIN OF MATHEMATICAL SCIENCES, 2014, 4 (03) : 407 - 431
  • [8] Globally Optimal Estimates for Geometric Reconstruction Problems
    Fredrik Kahl
    Didier Henrion
    International Journal of Computer Vision, 2007, 74 : 3 - 15
  • [9] Optimal geometric estimates for fractional Sobolev capacities
    Xiao, Jie
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (02) : 149 - 153
  • [10] Globally optimal estimates for geometric reconstruction problems
    Kahl, F
    Henrion, D
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 978 - 985