Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions

被引:2
|
作者
Otto, Felix [1 ]
Prod'homme, Maxime [2 ]
Ried, Tobias [1 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Optimal transportation; epsilon-regularity; Partial regularity; General cost functions; Almost-minimality; PROOF;
D O I
10.1007/s40818-021-00106-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the variational approach to regularity for optimal transport maps initiated by Goldman and the first author to the case of general cost functions. Our main result is an epsilon-regularity result for optimal transport maps between Holder continuous densities slightly more quantitative than the result by De Philippis-Figalli. One of the new contributions is the use of almost-minimality: if the cost is quantitatively close to the Euclidean cost function, a minimizer for the optimal transport problem with general cost is an almost-minimizer for the one with quadratic cost. This further highlights the connection between our variational approach and De Giorgi's strategy for epsilon-regularity of minimal surfaces.
引用
收藏
页数:74
相关论文
共 50 条
  • [1] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Felix Otto
    Maxime Prod’homme
    Tobias Ried
    Annals of PDE, 2021, 7
  • [2] On the regularity of the free boundary in the optimal partial transport problem for general cost functions
    Chen, S.
    Indrei, E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (07) : 2618 - 2632
  • [3] REGULARITY OF OPTIMAL TRANSPORT MAPS
    Figalli, Alessio
    ASTERISQUE, 2010, (332) : 341 - 368
  • [4] PARTIAL REGULARITY FOR OPTIMAL TRANSPORT MAPS
    De Philippis, Guido
    Figalli, Alessio
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 81 - 112
  • [5] Partial regularity for optimal transport maps
    Guido De Philippis
    Alessio Figalli
    Publications mathématiques de l'IHÉS, 2015, 121 : 81 - 112
  • [6] A VARIATIONAL PROOF OF PARTIAL REGULARITY FOR OPTIMAL TRANSPORTATION MAPS
    Goldman, Michael
    Otto, Felix
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1209 - 1233
  • [7] Existence, uniqueness, and regularity of optimal transport maps
    Figalli, Alessio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (01) : 126 - 137
  • [8] Sharp boundary ε-regularity of optimal transport maps
    Miura, Tatsuya
    Otto, Felix
    ADVANCES IN MATHEMATICS, 2021, 381
  • [9] Regularity of optimal transport maps and partial differential inclusions
    Ambrosio, Luigi
    De Philippis, Guido
    Kirchheim, Bernd
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 311 - 336
  • [10] Regularity of optimal transport maps on multiple products of spheres
    Figalli, Alessio
    Kim, Young-Heon
    McCann, Robert J.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) : 1131 - 1166