Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions

被引:2
|
作者
Otto, Felix [1 ]
Prod'homme, Maxime [2 ]
Ried, Tobias [1 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Optimal transportation; epsilon-regularity; Partial regularity; General cost functions; Almost-minimality; PROOF;
D O I
10.1007/s40818-021-00106-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the variational approach to regularity for optimal transport maps initiated by Goldman and the first author to the case of general cost functions. Our main result is an epsilon-regularity result for optimal transport maps between Holder continuous densities slightly more quantitative than the result by De Philippis-Figalli. One of the new contributions is the use of almost-minimality: if the cost is quantitatively close to the Euclidean cost function, a minimizer for the optimal transport problem with general cost is an almost-minimizer for the one with quadratic cost. This further highlights the connection between our variational approach and De Giorgi's strategy for epsilon-regularity of minimal surfaces.
引用
收藏
页数:74
相关论文
共 50 条
  • [21] A variational interpretation of general relativity in vacuum in terms of optimal transport
    Brenier, Yann
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 25 - 33
  • [22] NONEXISTENCE OF OPTIMAL TRANSPORT MAPS FOR THE MULTIMARGINAL REPULSIVE HARMONIC COST
    Gerolin, Augusto
    Kausamo, Anna
    Rajala, Tapio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2359 - 2371
  • [23] Stability results on the smoothness of optimal transport maps with general costs
    Chen, Shibing
    Figalli, Alessio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02): : 280 - 295
  • [24] A geometric approach to apriori estimates for optimal transport maps
    Brendle, Simon
    Leger, Flavien
    McCann, Robert J.
    Rankin, Cale
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (817): : 251 - 266
  • [25] Optimal mass transport and symmetric representations of their cost functions
    Nassif Ghoussoub
    Abbas Moameni
    Mathematics and Financial Economics, 2014, 8 : 435 - 451
  • [26] Optimal mass transport and symmetric representations of their cost functions
    Ghoussoub, Nassif
    Moameni, Abbas
    MATHEMATICS AND FINANCIAL ECONOMICS, 2014, 8 (04) : 435 - 451
  • [27] Limitations of Variational Quantum Algorithms: A Quantum Optimal Transport Approach
    De Palma, Giacomo
    Marvian, Milad
    Rouze, Cambyse
    Franca, Daniel Stilck
    PRX QUANTUM, 2023, 4 (01):
  • [28] Optimal Transport of Maps
    Jung, Woochul
    Morales, Carlos
    Wen, Xiao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (02)
  • [29] GENERAL QUADRATIC COST FUNCTIONS FOR OPTIMAL PARTIAL STATE FEEDBACK
    MARTIN, C
    MEYER, G
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (02) : 156 - 157
  • [30] An optimal online algorithm for scheduling with general machine cost functions
    Akaria, Islam
    Epstein, Leah
    JOURNAL OF SCHEDULING, 2020, 23 (02) : 155 - 162