Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions

被引:0
|
作者
Felix Otto
Maxime Prod’homme
Tobias Ried
机构
[1] Max-Planck-Institut für Mathematik in den Naturwissenschaften,Institut de Mathématiques de Toulouse
[2] Université Paul Sabatier,undefined
来源
Annals of PDE | 2021年 / 7卷
关键词
Optimal transportation; -regularity; Partial regularity; General cost functions; Almost-minimality; 49Q22; 35B65; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the variational approach to regularity for optimal transport maps initiated by Goldman and the first author to the case of general cost functions. Our main result is an ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-regularity result for optimal transport maps between Hölder continuous densities slightly more quantitative than the result by De Philippis–Figalli. One of the new contributions is the use of almost-minimality: if the cost is quantitatively close to the Euclidean cost function, a minimizer for the optimal transport problem with general cost is an almost-minimizer for the one with quadratic cost. This further highlights the connection between our variational approach and De Giorgi’s strategy for ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-regularity of minimal surfaces.
引用
收藏
相关论文
共 50 条
  • [1] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Otto, Felix
    Prod'homme, Maxime
    Ried, Tobias
    ANNALS OF PDE, 2021, 7 (02)
  • [2] On the regularity of the free boundary in the optimal partial transport problem for general cost functions
    Chen, S.
    Indrei, E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (07) : 2618 - 2632
  • [3] REGULARITY OF OPTIMAL TRANSPORT MAPS
    Figalli, Alessio
    ASTERISQUE, 2010, (332) : 341 - 368
  • [4] PARTIAL REGULARITY FOR OPTIMAL TRANSPORT MAPS
    De Philippis, Guido
    Figalli, Alessio
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 81 - 112
  • [5] Partial regularity for optimal transport maps
    Guido De Philippis
    Alessio Figalli
    Publications mathématiques de l'IHÉS, 2015, 121 : 81 - 112
  • [6] A VARIATIONAL PROOF OF PARTIAL REGULARITY FOR OPTIMAL TRANSPORTATION MAPS
    Goldman, Michael
    Otto, Felix
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1209 - 1233
  • [7] Existence, uniqueness, and regularity of optimal transport maps
    Figalli, Alessio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (01) : 126 - 137
  • [8] Sharp boundary ε-regularity of optimal transport maps
    Miura, Tatsuya
    Otto, Felix
    ADVANCES IN MATHEMATICS, 2021, 381
  • [9] Regularity of optimal transport maps and partial differential inclusions
    Ambrosio, Luigi
    De Philippis, Guido
    Kirchheim, Bernd
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 311 - 336
  • [10] Regularity of optimal transport maps on multiple products of spheres
    Figalli, Alessio
    Kim, Young-Heon
    McCann, Robert J.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) : 1131 - 1166