A geometric approach to apriori estimates for optimal transport maps

被引:0
|
作者
Brendle, Simon [1 ]
Leger, Flavien [2 ]
McCann, Robert J. [3 ]
Rankin, Cale [4 ,5 ]
机构
[1] Columbia Univ, 2290 Broadway, New York, NY 10027 USA
[2] INRIA Paris, Paris, France
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[5] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
来源
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE PROBLEM; POTENTIAL FUNCTIONS; REGULARITY; EQUATIONS; PRODUCTS; DESIGN;
D O I
10.1515/crelle-2024-0071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma-Trudinger-Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior C 1 C<^>{1} estimate for smooth optimal maps. Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren's observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条
  • [31] Optimal transport maps on Alexandrov spaces revisited
    Rajala, Tapio
    Schultz, Timo
    MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) : 1 - 18
  • [32] PLUGIN ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
    Manole, Tudor
    Balakrishnan, Sivaraman
    Niles-Weed, Jonathan
    Wasserman, Larry
    ANNALS OF STATISTICS, 2024, 52 (03): : 966 - 998
  • [33] Existence of optimal transport maps for crystalline norms
    Ambrosio, L
    Kirchheim, B
    Pratelli, A
    DUKE MATHEMATICAL JOURNAL, 2004, 125 (02) : 207 - 241
  • [34] Optimal transport maps on Alexandrov spaces revisited
    Tapio Rajala
    Timo Schultz
    manuscripta mathematica, 2022, 169 : 1 - 18
  • [35] Sharp boundary ε-regularity of optimal transport maps
    Miura, Tatsuya
    Otto, Felix
    ADVANCES IN MATHEMATICS, 2021, 381
  • [36] MINIMAX ESTIMATION OF SMOOTH OPTIMAL TRANSPORT MAPS
    Huetter, Jan-Christian
    Rigollet, Philippe
    ANNALS OF STATISTICS, 2021, 49 (02): : 1166 - 1194
  • [37] One Approach for Solving Optimization Problems with Apriori Estimates of Approximation of Admissible Set
    Andrianova, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2013, 34 (04) : 368 - 376
  • [38] GEOMETRIC APPROACH TO OPTIMAL DESIGN THEORY
    SILVEY, SD
    TITTERIN.DM
    BIOMETRIKA, 1973, 60 (01) : 21 - 32
  • [39] Optimal Logistics Outsourcing: A geometric Approach
    Mai, Yinhua
    Teo, Chung-Piaw
    Miao, Lixin
    PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON LOGISTICS SYSTEMS AND INTELLIGENT MANAGEMENT, VOLS 1-3, 2010, : 709 - +
  • [40] OPTIMAL REINSURANCE REVISITED - A GEOMETRIC APPROACH
    Cheung, Ka Chun
    ASTIN BULLETIN, 2010, 40 (01): : 221 - 239