A geometric approach to apriori estimates for optimal transport maps

被引:0
|
作者
Brendle, Simon [1 ]
Leger, Flavien [2 ]
McCann, Robert J. [3 ]
Rankin, Cale [4 ,5 ]
机构
[1] Columbia Univ, 2290 Broadway, New York, NY 10027 USA
[2] INRIA Paris, Paris, France
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[5] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
来源
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE PROBLEM; POTENTIAL FUNCTIONS; REGULARITY; EQUATIONS; PRODUCTS; DESIGN;
D O I
10.1515/crelle-2024-0071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A key inequality which underpins the regularity theory of optimal transport for costs satisfying the Ma-Trudinger-Wang condition is the Pogorelov second-derivative bound. This translates to an apriori interior C 1 C<^>{1} estimate for smooth optimal maps. Here we give a new derivation of this estimate which relies in part on Kim, McCann and Warren's observation that the graph of an optimal map becomes a volume maximizing spacelike submanifold when the product of the source and target domains is endowed with a suitable pseudo-Riemannian geometry that combines both the marginal densities and the cost.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条